February 10, 2022

Notes on Numerical Simulation for Acoustics

David Herrin University of Kentucky

Overview

- Fundamentals
- Example 1 Engine Cover
- Example 2 HVAC Duct
- Example 3 Concentric Perforated Tube Muffler

The Wave and Helmholtz Equation

$$\nabla^2 p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2}$$

The wave equation

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0$$

Helmholtz equation (assume constant frequency excitation)

$$\nabla^2 p + k^2 p = 0$$
$$k = \frac{\omega}{2}$$

С

February 10, 2022

Finite and Boundary Element Analysis

Finite and Boundary Element Analysis

	FEM	BEM	
	Domain method	Boundary method	
Discretization	volume (3-D)	surface (2-D)	
Calculation of modes	straightforward	expensive	
Sound radiation	AML or infinite elements automatic		
Different materials	straightforward multi-domain		
Solution time (large models)	faster for direct frequency response	slower (fast multi- pole can speed it up)	

Software Landscape

Software	FEM	BEM
Ansol Coustyx	No	Yes
ANSYS	Yes	No
Comsol Acoustics	Yes	Yes
ESI VA-One	Yes	Yes
MSC Actran	Yes	No
Siemens Simcenter	Yes	Yes
Simulia Wave6	Yes	Yes

Muffler Analysis Program

- Tim Wu University of Kentucky
- BEM based

Boundary Conditions

- Normal Particle Velocity
 - Default BC is $v_n = 0$
 - Commonly read in from structural FEM
- Sound Pressure
 - Not commonly used
- Impedance (Z) or Admittance (A)
 - Sound absorption
 - Anechoic termination

$$Z = \frac{p}{\nu_n} = \frac{1}{A}$$

Point Monopole Source

• Sound Pressure Amplitude (A_+)

$$p = \frac{A_+}{r} e^{-jkr}$$

• Volume Velocity (Q)

$$Q = \frac{4\pi A_+}{j\rho ck}$$

• Sound Power (W)

$$W = \frac{\rho c k^2}{4\pi} Q^2$$

February 10, 2022

Acoustic Wavelength

 $\lambda_a = \frac{c}{f}$

6 to 10 linear elements per acoustic wavelength.

https://www.acs.psu.edu/drussell/demos.html

Overview

- Fundamentals
- Example 1 Engine Cover
- Example 2 HVAC Duct
- Example 3 Concentric Perforated Tube Muffler

February 10, 2022

Aluminum Oil Pan

()

Experimental Setup

February 10, 2022

Experimental Setup

Structural FEM Model

Solid Parabolic Tetrahedral Elements: 40,944 elements, 83,013 Nodes Fixed nodes at bolt positions

Verification of FEM Model (15 Fixed Points)

Mode No.	Measured (Hz)	FEM (Hz)	Error (%)
1	953	994	4.3
2	1611	1672	3.8
3	2241	2257	0.7
4	2646	2668	0.8
5	2761	2735	-1.0
6	3031	3095	2.1
7	3953	3818	-3.4
8	4226	4015	-5.0
9	4643	4240	-8.7

Forced Response

- Measured damping
- Unit force at stinger

Proportionality Relationships

Vibration Comparison

BEM Model

2072 linear elements, 2148 nodes

Sound Pressure Level

Sound Power Level

FEM Model

Radiation Boundary Conditions

- Infinite Elements
- Perfectly Matched Layer (PML)
- Automatically Matched Layer (AML)

Radiation Boundary Condition

AML automates PML volume generation adjusting for needs on a frequency by frequency basis

Infinite Elements

Sound Power Comparison

Overview

- Fundamentals
- Example 1 Engine Cover
- Example 2 HVAC Duct
- Example 3 Concentric Perforated Tube Muffler

Sound Absorptive Materials

Local Reacting Model

Specific Boundary Impedance

Bulk Reacting Model

- Complex Speed of Sound and Density
- Johnson Champoux Allard (JCA) parameters

February 10, 2022

Specific Boundary Impedance

February 10, 2022

Specific Boundary Impedance

Complex Speed of Sound and Density

- Complex Speed of Sound
- Complex Density

6

JCA Model

Johnson-Champoux-Allard Model

- Flow Resistivity
- Porosity
- Tortuosity
- Viscous Characteristic Length
- Thermal Characteristic Length
- Static Thermal Permeability
- Static Viscous Permeability

Sound Absorptive Material Properties

- Johnson-Champoux-Allard model (Allard and Atalla 2009)
- Curve fit (using ESI Foam-X software) used to determine JCA parameters.

RP-1408 Campaign

Modeling Approach

February 10, 2022

Modeling Approach

Insertion Loss – Lined Duct

24 in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) Length Square Duct 2 in (5 cm) fiber lining)

Overview

- Fundamentals
- Example 1 Engine Cover
- Example 2 HVAC Duct
- Example 3 Concentric Perforated Tube Muffler

Transfer Impedance

A transfer impedance is commonly used to model perforates, covers and source impedance. Particle velocity is assumed to be continuous across the layer.

$$z_{tr} = \frac{p_1 - p_2}{u}$$

$$u_1 = u_2 = u$$
$$p_1 \qquad p_2$$

Transfer Impedance Measurement

$$z_{tr} = z_1 - z_2$$

Transfer Relation

Transfer Relations

Used for modeling perforates and catalysts.

Transfer Impedance

$${u_{n1} \\ u_{n2} } = \begin{bmatrix} \frac{1}{z_{tr}} & -\frac{1}{z_{tr}} \\ \frac{1}{z_{tr}} & -\frac{1}{z_{tr}} \end{bmatrix} {p_1 \\ p_2 } + {0 \\ 0 }$$

FEM Model

Transmission Loss

Summary

We have numerous simulation tools that are easy to use and can solve acoustic problems quickly.

