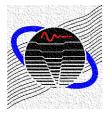
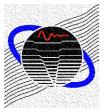
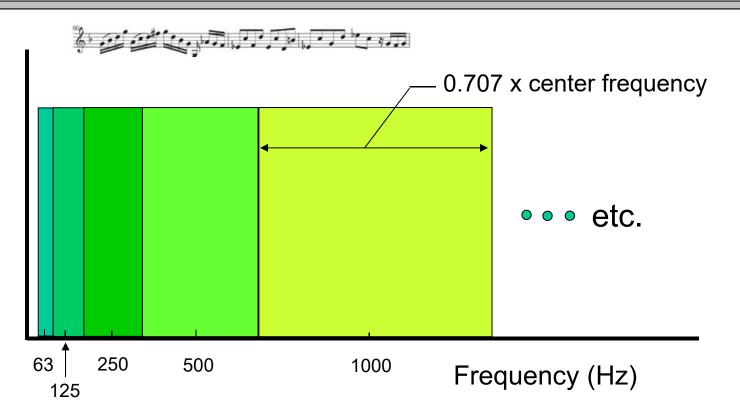

June 17, 2021


Determination of Octave Band Transmission Loss

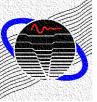
David Herrin University of Kentucky


Motivation

- How can you use simulation data to find the transmission loss in 1/3 octave or octave bands?
- Can you measure the transmission loss in 1/3 octave bands?



Overview


- Octave and 1/3 Octave Bands
- Transmission Loss in Octave Bands

Octave Band Filters

Each octave band filter has a fixed *center frequency* and is twice as wide as the one before it. Each octave band filter may be divided into three one-third octave band filters for more frequency resolution.

Band	Octave band	1/3-octave band	Band limits	
number	centre frequency	centre frequency	Lower	Upper
11		12.5	11	14
12	16	16	14	18
13		20	18	22
14		25	22	28
15	31.5	31.5	28	35
16		40	35	44
17		5	44	57
18	63	63	57	71
19		80	71	88
20		100	88	113
21	125	125	113	141
22		160	141	176
23		200	176	225
24	250	250	225	283
25		315	283	353
26		400	353	440
27	500	500	440	565
28		630	565	707
29		800	707	880
30	1000	1000	880	1130
31		1250	1130	1414
32		1600	1414	1760
33	2000	2000	1760	2250
34		2500	2250	2825
35		3150	2825	3530
36	4000	4000	3530	4400
37		5000	4400	5650
38		6300	5650	7070
39	8000	8000	7070	8800
40		10000	8800	11300
41		12500	11300	14140
42	16000	16000	14140	17600
43		20000	17600	22500

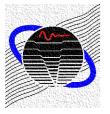
TABLE 1.2 Preferred octave and 1/3-octave frequency bands

Octave and 1/3 Octave Bands $\frac{number}{11}$

Bies et al., 2018

Conversion between Bandwidths

Example:


If the level measured with a 1000 Hz octave band filter is 100 dB, the sound pressure level in narrowband (assuming equal energy across all frequencies) is

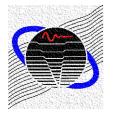
 $L_{p,1 \text{ Hz}} = 100 - 10 \log_{10}(1400 - 710) = 71.6 \text{ dB}$

The one-third octave band level at the same center frequency is

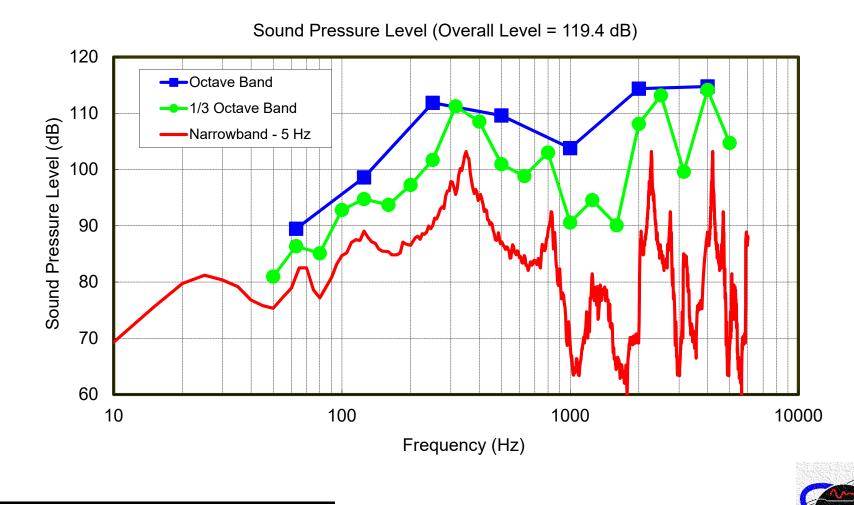
$$L_{p,1/3} = 71.6 + 10 \log_{10}(1120 - 900) = 95 \text{ dB}$$

The approximation that the one-third octave band level is 5 dB below the corresponding octave band level is sometimes used in practice.

Conversion between Bandwidths

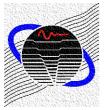

Summing Sound Pressures

$$L_{p_{tot}} = 10 \log_{10} \left(\sum_{n=1}^{N} 10^{\frac{L_{p_n}}{10}} \right)$$

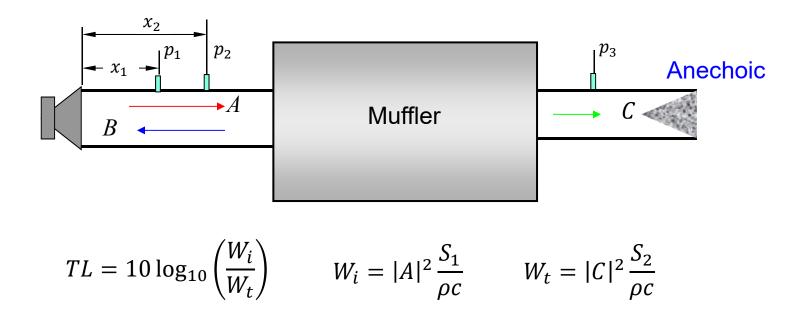

Example:

The 1000 Hz octave band includes the 800, 1000, and 1250 Hz thirdoctave bands. Determine the octave band level if the 1/3-octave band levels are 86, 86 and 86 dB, respectively.

$$L_{p_{tot}} = 10 \log_{10} (10^{86/10} + 10^{86/10} + 10^{86/10}) = 91 \text{ dB}$$

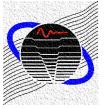


1/3 and Octave Band Sound Pressures

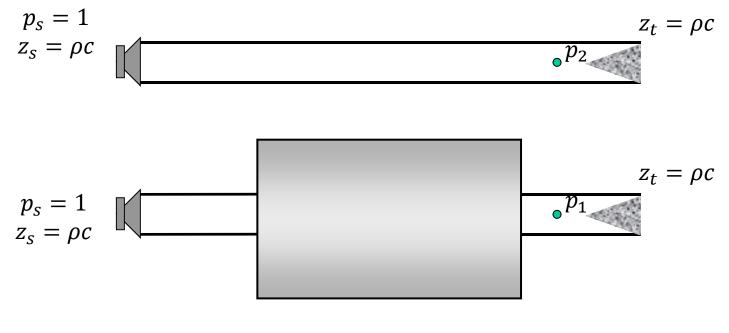


Overview

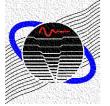
- Octave and 1/3 Octave Bands
- Transmission Loss in Octave Bands


Method 1 Wave Decomposition

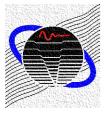
With anechoic termination,


1. *A* and *C* are simulated directly in narrowband.

2. W_i and W_t can be calculated in narrowband and then convert to octave bands.


Method 2 Equivalent Insertion Loss

Insertion loss is equal to transmission loss if source and termination are both anechoic.


 $TL = IL = SPL_2 - SPL_1$

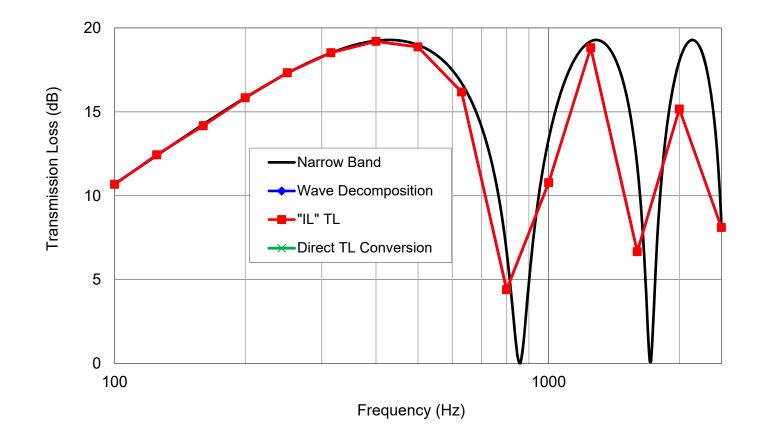
11

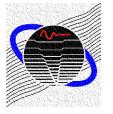
Method 2 Equivalent Insertion Loss

- 1. Calculate the sound pressures p_1 and p_2 at the termination of the straight tube and the muffler separately in narrowband.
- 2. Convert p_1 and p_2 to octave (or 1/3 octave) bands and find the difference as transmission loss.

Method 3 Direct TL Conversion

If transmission loss in narrowband is available,

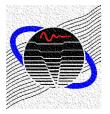

- 1. Set the incident sound power W_i as a constant.
- 2. Calculate the corresponding transmitted sound power W_t at each frequency.


$$L_{W_t} = L_{W_i} - TL$$

3. Then W_i and W_t then can be converted into octave bands and the difference taken in dB.

$$TL = L_{W_i} - L_{W_t}$$

Test Case Simple Expansion Chamber



Summary

- There is no standard procedure for determining transmission loss in 1/3 or octave bands using measured data or simulation.
- Three methods are proposed. The underlying assumption is that the source is broadband.
- Direct transmission loss conversion is the simplest method.

Wang, P., Hua, X., Wu, T., and Herrin, D., "Methods for Determining Muffler Transmission Loss in Octave Bands," SAE Technical Paper 2016-01-1317, 2016, doi:10.4271/2016-01-1317.

