Design of Acoustic Enclosures

David Herrin University of Kentucky

Overview

Introduction

- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

Partial Enclosure

Source Path Receiver Map

Overview

- Introduction
- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

Beranek, 1960

Vibro-Acoustics Consortium

Sound Transmission Through Thin Panel

Region 1 Resonance Controlled

Below 1st Panel Resonance

- The response is determined by the panel's static stiffness.
- Higher stiffness, higher transmission loss.

At and Above 1st Panel Resonance

• The response is determined by the resonant modes.

1st Panel Resonance

For simply-supported rectangular panel:

$$f(n_x, n_y) = \frac{\pi}{2} \sqrt{\frac{Eh^2}{12\rho}} \left(\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 \right)$$

where:

- *E* Young's modulus
- *h* plate thickness
- ρ density
- n_x x mode index
- n_y y mode index
- L_x plate width in x direction
- L_y plate width in y direction

Panel Resonances

First 4 modes of a 30 inch square steel plate which is 1/8 inch thick.

Region 2 Limp Panel Theory

Normal Incidence Transmission Loss

Oblique Incident Sound Transmission

Diffusive sound field: plane waves of the same average intensity travelling with equal probability in all directions.

$$\tau = \tau(\varphi) \qquad \qquad \bar{\tau} = \frac{\int_0^{\varphi_{\lim}} \tau(\varphi) \cos \varphi \sin \varphi \, d\varphi}{\int_0^{\varphi_{\lim}} \cos \varphi \sin \varphi \, d\varphi}$$

For field incidence (better agreement with measurement) $\varphi_{\text{lim}} = 78^{\circ}$

 $TL_{Field} = TL_0 - 5.5 \text{ dB}$ 1/3 octave bands

 $TL_{Field} = TL_0 - 4.0 \text{ dB}$ octave bands

Field Incidence

Theoretical sound transmission loss of large panels for frequencies in Region 2:

Region 3 Coincidence Effect

This pronounced dip in transmission loss curve occurs when the wavelength of sound in the air coincides with the structural wavelength. This frequency is called critical frequency.

$$f_C = \frac{c^2}{2\pi} \sqrt{\frac{\rho_S}{D}}$$

where:

$$\rho_s = m/S$$
$$D = \frac{Eh^3}{12(1-v^2)}$$

Panel surface density

Bending stiffness of plate

Radiation Efficiency

In thin plates, the dominating vibration will be bending vibration. Unlike an acoustic wave, bending wave speed is dependent on frequency.

Plate bending $c_p = \sqrt[4]{\frac{D\omega^2}{c}}$

$$\lambda_p = \sqrt{\frac{2\pi}{f}} \sqrt[4]{\frac{D}{\rho_s}}$$

Sound in air

$$\lambda_a = \frac{\alpha}{f}$$

 $\Delta l \gg 0$

Radiation Efficiency

$$\lambda_p \ll \lambda_a \qquad \Delta l = l_+ - l_- \approx 0 \qquad \qquad \lambda_p \approx \lambda_a$$

Radiation Efficiency

17

Effect of Thickness

Increase TL according to Mass Law

$$TL_0 = 20\log_{10}(\rho_s f) - 42 \qquad h$$

Shift critical frequency above range of interest

$$f_{C} = \frac{c^{2}}{2\pi} \sqrt{\frac{12(1-v^{2})\rho_{S}}{Eh^{3}}} \qquad h$$

Poses a dilemma due to inconsistent requirement.

69

Various Designs

Single 1-inch and two 1/2-inch spot laminated sheets of gypsum board

Double Panels

Vibro-Acoustics Consortium

Fundamental resonant frequency:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{\rho_0 c^2}{\rho'_S d}} \qquad \qquad \rho'_S = \frac{\rho_{S1} \rho_{S2}}{\rho_{S1} + \rho_{S2}}$$

Cavity resonant frequency:

$$f_l = \frac{c}{2\pi d} = \frac{f_1}{\pi}$$

20

Overview

- Introduction
- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

For Composite Panels

For each part of the panel

$$\tau_i = \frac{1}{1 + \left(\frac{\omega m_i}{2\rho_0 cS_i}\right)^2} \approx \left(\frac{2\rho cS_i}{\omega m_i}\right)^2 = \left(\frac{\rho c}{\pi f \rho_{si}}\right)^2$$

For composite panels

$$\tau_{total} = \frac{\sum \tau_i S_i}{S_{total}}$$

Transmission loss

$$TL_{total} = 10 \log_{10} \frac{1}{\tau_{total}}$$

Transmission Loss of a Composite Panel

$$\tau = \frac{1}{4} \left(0.01 \cdot 2 + 0.1 \cdot 2 \right) = 0.055$$

$$TL = 10 \log_{10} \frac{1}{0.055} = 12.6 \text{ dB}$$

Transmission Loss of a Composite Panel

Transmission Loss of Slits

For *kw* < 0.5

Slit in the center of a wall

$$\tau = \frac{2w}{kl^2}$$

Slit on edge of wall

$$\tau = \frac{4w}{kl^2}$$

w width or height of slit (use 1.2 mm for doors with no seals)

l depth of the slit

k wavenumber

Treatment with Ventilation Openings

Vibro-Acoustics Consortium

April 8, 2021

Overview

- Introduction
- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

Wallin, Carlsson, Abom, Boden, and Glav, 2001

April 8, 2021

Baffle Silencers Examples

Absorption materials Flow Resistivity σ

In theory, the dissipated power (W_{diss}) is a maximum when $\sigma_r t = 2\rho c$. A general rule of thumb is that a sound absorber will be effective when $\sigma_r t \approx n\rho c$ where *n* is on the order of 2. This assumes that the acoustic resistance is equal to the static flow resistance.

Baffle Silencers Design Parameters

$$IL = \Delta L_{ENT} + L_h \frac{l}{h}$$

Vibro-Acoustics Consortium

 L_h

Baffle Silencers Entrance Loss

The entrance loss is high when the air gap is comparable to a wavelength.

Ver and Beranek, 2005

Baffle Silencers Normalized Attenuation *L*_{*h*}

Normalized flow resistivity:

$$R = \frac{\sigma d}{\rho c}$$

The normalized attenuation L_h has been computed for various percentage of open area of silencer cross section and for various values of the normalized flow resistivity of absorption materials in the baffles.

Overview

- Introduction
- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

Sealed Enclosure

$$L_{p} = L_{W} - TL_{Field} - 10\log_{10}S_{e} + 10\log_{10}\left(0.3 + \frac{S_{e}(1 - \bar{\alpha}_{i})}{S_{i}\bar{\alpha}_{i}}\right)$$

- L_W sound power of the source (dB)
- S_e external surface area
- S_i internal surface area
- $\overline{\alpha_i}$ average sound absorption

Sealed Enclosure (Simplified Equation)

$$L_p = L_W - TL - 10\log_{10}S_e + C$$

TABLE 7.8 Values of coefficient, C (dB), to account for enclosure internal acoustic conditions. The following criteria are used to determine the appropriate acoustic conditions inside the enclosure

Enclosure internal acoustic conditions	Octave band centre frequency (Hz)							
	63	125	250	500	1000	2000	4000	8000
Live	18	16	15	14	12	12	12	12
Fairly live	13	12	11	12	12	12	12	12
Average	13	11	9	7	5	4	3	3
Dead	11	9	7	6	5	4	3	3

Live: All enclosure surfaces and machine surfaces hard and rigid.

Fairly live: All surfaces generally hard but some panel construction (sheet metal or wood). **Average:** Enclosure internal surfaces covered with sound-absorptive material, and machine surfaces hard and rigid.

Dead: As for 'Average', but machine surfaces mainly of panels.

Partial Enclosures (2 inch lining)

Partial Enclosure Insertion Loss

$$IL = 10 \log_{10} \left[1 + \bar{\alpha} \left(\frac{\Omega_{total}}{\Omega_{open}} - 1 \right) \right] dB$$

 $\overline{\alpha}$

average sound absorption

$$\Omega_{total} = \frac{S_{total}}{r_{avg}^2}$$
$$\Omega_{opening} = \frac{S_{open}}{r_{open}^2}$$

solid angle of enclosure

solid angle of enclosure opening

 r_{avg}

average distance from source center to enclosure

r_{opening}

distance from source center to opening center

Overview

- Introduction
- Sound transmission through panels
- Sound transmission through leaks
- Baffle silencers
- Rudimentary equations for enclosure design
- Numerical simulation of partial enclosures

Test Case

- 0.48 x 0.48 x 0.66 m³
- Opening of radius 0.051 m
- Top and left panels (1 mm thick steel)
- All other panels (2 mm thick steel)

Measurement Setup

Wood Blocks

Sound Absorption Material

Opening Area

Enclosure Modes

$$f_{lmn} = \frac{c}{2} \sqrt{\left(\frac{l}{L_x}\right)^2 + \left(\frac{m}{L_y}\right)^2 + \left(\frac{n}{L_z}\right)^2}$$

 $f_{0,0,1} = 260 \text{ Hz}$

 $l, m, n = 0, 1, 2, 3 \dots N$

$$f_{0,0,2} = 519 \text{ Hz}$$

Indirect BEM

Modeling Approach Impedance

Modeling Approach Source Geometry

Modeling Approach Source Geometry

Vibro-Acoustics Consortium

April 8, 2021

Modeling Approach Panel Absorption

Modeling Approach Panel Absorption

Modeling Approach Coupling

Modeling Approach Coupling

Vibro-Acoustics Consortium

April 8, 2021

Validation Test Two Openings

Validation Test Two Openings

Validation Test Increased Open Area

References

- 1. D. A. Bies, C. H. Hansen, and C. Q. Howard (2018). *Engineering Noise Control.* CRC Press, Boca Raton, FL.
- 2. Ver, I. L., and Beranek, L. L. (2005). *Noise and Vibration Control Engineering: Principles and Applications*. John Wiley and Sons.
- 3. Sharp, B. H. (1973). A study of techniques to increase the sound insulation of building elements. U.S. Department of Commerce, National Technical Information Service (NTIS).
- Zhou, L., Carter, A. E., Herrin, D. W., Shi, J., and Copley, D. C. (2011). "Airborne Path Attenuation of Partial Enclosures: Simulation and Sensitivity Study," Applied Acoustics, Vol. 72, pp. 380-386.

6