#### Development and Qualification of an Anechoic Termination

Seth Donkin University of Kentucky



# Objective

Develop and qualify an anechoic termination for use with muffler test flow rig.





# **Background Flow Rig**



## **Background Flow Rig**





#### **Background Specification Summary**

Pressure Range:  $0 - 110 \text{ H}_2 0$ Flow Velocity Range: 0 - 0.17 MaPlane Wave Cutoff Frequency

$$f_{cutoff} = \frac{1.84c}{\pi D_o} \sqrt{1 - M^2}$$

| Mach Number [Ma] | Cutoff Frequency<br>2" OD - [Hz] |  |
|------------------|----------------------------------|--|
| 0                | 3957                             |  |
| 0.05             | 3952                             |  |
| 0.1              | 3936                             |  |
| 0.15             | 3911                             |  |



# **Background** Qualification Summary

The flow rig is currently qualified for:

- i. Flow rate
- ii. Pressure Drop
- iii. Transmission Loss (No Flow)
- iv. Noise Reduction (No Flow)
- v. Insertion Low with Flow



# **Rationale for Anechoic Termination**

#### Uses for anechoic terminations

- I. Measurement of the sound power of fans and other air-moving devices
- II. <u>Measurement of transmission loss (TL)</u> No reflected wave in tailpipe so TL can be measured directly with only a single acoustic load.





#### **Anechoic Termination Standard**

#### ISO-5136

- Standard to determine sound power for ducted fans and other air-moving devices.
- Prescribes a maximum pressure reflection coefficient for qualifying an anechoic termination
- Provides examples of anechoic termination designs

| One-third-octave-band<br>centre frequency | Maximum pressure reflection coefficient |                  |  |
|-------------------------------------------|-----------------------------------------|------------------|--|
| Hz                                        | Test duct                               | Terminating duct |  |
| 50                                        | 0,4                                     | 0,8              |  |
| 63                                        | 0,35                                    | 0,7              |  |
| 80                                        | 0,3                                     | 0,6              |  |
| 100                                       | 0,25                                    | 0,5              |  |
| 125                                       | 0,15                                    | 0,3              |  |
| 160                                       | 0,15                                    | 0,3              |  |
| > 160                                     | 0,15                                    | 0,2              |  |

Table 5 — Maximum permissible values of the pressure reflection coefficient of the anechoic termination

NOTE 1 An open duct end of 1,6 m diameter fulfils the maximum pressure reflection coefficient requirements for terminating ducts.

NOTE 2 The anechoic termination for the termination duct is needed only to establish a basically non-reflective acoustic load impedance; no sound pressure measurements are to be made in the terminating duct. Therefore, the maximum permissible pressure reflection coefficient of the anechoic termination of the terminating duct is greater than that of the test duct.



#### Catenoid Termination ISO-5136



| Inlet diameter (m) |                                                           | 0.46                                                                                                                                         |  |
|--------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.529              | $l_1$                                                     | 0.6624                                                                                                                                       |  |
| 0.7544             | $l_2$                                                     | 1.3294                                                                                                                                       |  |
| 1.035              | $l_3$                                                     | 1.7894                                                                                                                                       |  |
| 1.5824             | $l_4$                                                     | 2.3506                                                                                                                                       |  |
| 0.7682             | $l_5$                                                     | 2.9624                                                                                                                                       |  |
|                    | meter (m)<br>0.529<br>0.7544<br>1.035<br>1.5824<br>0.7682 | $\begin{array}{c c} \mbox{meter (m)} & 0.4 \\ \hline 0.529 & l_1 \\ 0.7544 & l_2 \\ 1.035 & l_3 \\ 1.5824 & l_4 \\ 0.7682 & l_5 \end{array}$ |  |

#### Key

1 perforated metal, approximately 58 % open

- 2 open-celled foam or fibreglass having a density of 24 kg/m<sup>3</sup>
- 3 fibre glass having a density of 48 kg/m<sup>3</sup>



## Catenoid Termination **SIDLAB**



## Catenoid Termination **SIDLAB**





## Stepped Termination ISO-5136





# Stepped Termination SIDLAB







## Stepped Termination SIDLAB





#### **Anechoic Termination**

Donated by Dr. Hank Howell. Total Length: 3.4 m (~11 ft)







### **Anechoic Termination**



#### **Anechoic Termination**



Vibro-Acoustics Consortium

**End View** 

17



#### **Reflection Coefficient Measurement**

Use ASTM E1050 to find |R|





#### **Reflection Coefficient Measurement**



# **FEM Simulation**

- Anechoic source.
- No flow.
- Unit normal velocity at the inlet.
- To replicate the outlet condition a "mushroom" of air is modeled around the outlet of the horn and an AML is applied to outer surface.
- Sound pressure is measured at two positions to determine reflection coefficient.





# **FEM Simulation**

 Currently it assumed to be a porous material defined using the Delany-Bazley-Miki model with the properties: Mass density: 30 kg/m<sup>3</sup> Static Flow Resistivity: 12,000 Rayls Porosity: 0.95





## **FEM Simulation Method 1**





# FEM Simulation Method 2



Independent sections are modeled to force a local reacting model. Simulates high resistive fabric layer between fiber sections.



#### **FEM Simulation**



## Future Work

- Further improve the Siemens Simcenter simulation.
- Measure reflection coefficient of the anechoic termination under a range of flow conditions.
- Measure transmission loss of simple mufflers with flow.

