Back of the Envelope Methods for Assessing Noise and Vibration

David Herrin University of Kentucky

Overview

- Fundamentals
- Equations for Common Situations
- Examples

An Analogy

Like temperature, the sound pressure depends on the source power level AND the environment in which the source is placed.

Sound Pressure and Sound Power

$$W_{S} = IS = \left(\frac{p_{rms}^{2}}{\rho_{o}c}\right)S$$

$$10 \log_{10}\left(\frac{W_{S}}{W_{ref}}\right) = 10 \log_{10}\left(\frac{p_{rms}^{2}}{\rho_{o}cW_{ref}}\right) + 10 \log_{10}(S)$$

$$P_{ref} = 20 \times 10^{-6} \text{ Pa}$$

$$W_{ref} = 1.0 \times 10^{-12} \text{ W}$$

 $L_W \approx L_P + 10\log_{10}(S)$

6

Sound Pressure and Sound Power

https://www.acs.psu.edu/drussell/demos.html

$$L_W \approx L_P + 10 \log_{10}(S)$$
$$L_W \approx L_P + 10 \log_{10}(4\pi r^2)$$
$$L_p \approx L_W + 10 \log_{10}\left(\frac{1}{4\pi r^2}\right)$$

Room Acoustics Theory

Room Acoustics Theory

The Critical Distance

Example

A noise source produces an average sound pressure level of 70 dB at a distance of 10 m from the source in a free field. The source is placed into a room with dimensions of 4 m x 5 m x 3 m. The interior walls are estimated to have an average absorption coefficient of 0.1. Estimate the sound pressure level in the room 2 m from the source. Is the sound absorption effective?

Free Field Source

Source in Room

Critical Distance

$$L_p = L_W + 10 \log\left(\frac{\Gamma}{4\pi r^2}\right) \qquad \qquad L_p^{tot} = L_W^{dir} + 10 \log\left(\frac{\Gamma}{4\pi r}\right) \\ L_W = L_p - 10 \log\left(\frac{\Gamma}{4\pi r^2}\right) \qquad \qquad L_p^{tot} = 101 + 10 \log\left(\frac{1}{4\pi r}\right) \\ L_W = 70 - 10 \log\left(\frac{1}{4\pi (10)^2}\right) dB \qquad \qquad L_p^{tot} = 97.1 dB \\ L_W = 101 dB$$

Sound Transmission Between Rooms

$$L_{p1} - L_{p2} = SI + 10 \log\left(\frac{R_{r2}}{S_p}\right)$$

Transmission Loss of a Panel

$$\tau = \frac{2\rho cS}{\omega m} \qquad \omega = 2\pi f$$

$$TL = 20 \log_{10} \left(\frac{1}{\tau}\right) = 20 \log_{10} \left(\frac{m\pi}{\rho cS}f\right)$$

$$TL = 20 \log_{10} \left(\frac{m}{S}f\right) - 20 \log_{10} \left(\frac{\rho c}{\pi}\right)$$

$$\rho_s = \frac{m}{S} \qquad \text{(panel surface density = bulk density × thickness)}$$

 $TL = 20 \log_{10}(\rho_s f) - 42 \text{ dB}$ for air, SI units

Transmission Loss of a Composite Panel

For each part of the panel

$$\tau_{i} = \frac{1}{1 + \left(\frac{\omega m_{i}}{2\rho_{0}cS_{i}}\right)^{2}} \approx \left(\frac{2\rho cS_{i}}{\omega m_{i}}\right)^{2} = \left(\frac{\rho c}{\pi f \rho_{si}}\right)^{2}$$

For composite panels

$$\tau_{total} = \frac{\sum \tau_i S_i}{S_{total}}$$

Transmission loss

$$TL_{total} = 10 \log_{10} \frac{1}{\tau_{total}}$$

Transmission Loss of a Composite Panel

Transmission Loss of a Composite Panel

Oblique Incident Sound Transmission

Diffusive sound field: plane waves of the same average intensity travelling with equal probability in all directions.

$$\tau = \tau(\varphi) \qquad \qquad \tau = \frac{\int_0^{\varphi_{lim}} \tau(\varphi) \cos \varphi \sin \varphi \, d\varphi}{\int_0^{\varphi_{lim}} \cos \varphi \sin \varphi \, d\varphi}$$

*(***)** - - -

For random incidence $\varphi_{lim} = 90^{\circ}$

 $TL_{random} = TL_{\perp} - 10\log_{10}(0.23TL_{\perp})$

For field incidence (better agreement with measurement) $\varphi_{lim} = 78^{\circ}$

$$TL_{field} = TL_{\perp} - 5 \text{ dB}$$

Application Acoustic Enclosure

No Enclosure Intensity inside enclosure

W

 $I_{base} = \frac{W}{S_2 \alpha_2}$

$$I_{enc} = \frac{H}{S_1 \alpha_1 + S_1 \tau_1}$$

Intensity for enclosed source

$$I_{tr} = S_1 \tau_1 \left(\frac{W}{S_1 \alpha_1 + S_1 \tau_1} \right) \left(\frac{1}{S_2 \alpha_2} \right)$$

Enclosure Insertion Loss

$$TL = 10 \log_{10} \left(\frac{1}{\tau_1}\right)$$
$$IL = TL + 10 \log_{10}(\langle \alpha_1 \rangle + \langle \tau_1 \rangle)$$
$$\langle \alpha \rangle >> \langle \tau \rangle \longrightarrow \text{Typical}$$
$$IL = TL + 10 \log_{10}(\langle \alpha_1 \rangle)$$

Overview

- Fundamentals
- Equations for Common Situations
- Examples

Spreadsheet Model Assumptions

- Sound sources are incoherent, and the acoustic signals are wide band. Sound sources distributed at distances greater than $\lambda/6$ may be considered incoherent where λ is the acoustic wavelength.
- Sound fields in closed spaces are quasi-diffuse. As an approximation, the sound field in a closed space may be considered diffuse at frequencies above that of the 10th acoustic mode.
- Sound pressure at any specific point is determined by the energy summation principle.
- Resonance phenomena are ignored as a rule.
- Sources generate sound fields which are idealized as spherical, cylindrical, or plane wave.
- Sources in closed spaces are assumed to be omni-directional.
- Closed spaces are characterized by an average coefficient of sound absorption.
- The ratio of the maximum to the minimum linear dimensions of acoustic spaces generally should not exceed 5. Other simplified models should be considered in that case.

July 30, 2020

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma\chi}{4\pi r^2}\right) + DI - \beta$$

Direct Field

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma \chi}{4\pi r^2}\right) + DI - \beta$$

- L_p Sound pressure level at receiver
- L_W Sound power of source
- *r* Distance from source to receiver
- Γ Symmetry planes
- χ Near field effect (can be ignored for small sources)
- *DI* Directivity Index
- β Location of Source

6

July 30, 2020

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma\chi}{4\pi r^2}\right) + DI - \beta$$

Direct Field

 l_{max} maximum linear dimension of source

4 R/lmax

3

2

1 .

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma \chi}{4\pi r^2}\right) + DI - \beta$$

Direct Field

Symmetry Surfaces

- $\Gamma = 1$ Free Field
- $\Gamma = 2$ 1 Symmetry Surface
- $\Gamma = 4$ 2 Symmetry Surfaces
- $\Gamma = 8$ 3 Symmetry Surfaces

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma \chi}{4\pi r^2}\right) + DI - \beta$$

Directivity Index

Directivity Index

- 1. Upwards DI = 0
- 2. Towards Operator Loc. DI = 4 dB
- 3. Opposite Operator Loc. DI = -4 dB

Exposed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma\chi}{4\pi r^2}\right) + DI - \beta$$

Source Shielding

Source Shielding

1.	No Barrier	eta=0
2.	Partially Shielded	$\beta = 5 \text{ dE}$

3. Fully Shielded $\beta = 8 \text{ dB}$

July 30, 2020

Enclosed Source – Exposed Receiver

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4\pi r_{se}^{2}} + \frac{4\psi_{se}}{R_{r}} \right) - SI_{diff} + 10 \log \left(\frac{\Gamma_{e} \chi_{er}}{4\pi r_{er}^{2}} \right)$$

Enclosure Airspace Panel Sound
Isolation Enclosure to Receiver
Air Path
Enclosed Source – Exposed Receiver

July 30, 2020

Enclosed Source – Exposed Receiver

$$L_p = L_W + 10 \log \left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2} + \frac{4\psi_{se}}{R_r} \right) - SI_{diff} + 10 \log \left(\frac{\Gamma_e \chi_{er}}{4\pi r_{er}^2} \right)$$

Enclosure Airspace

Near Field Adjustment

- χ see earlier slide
- *se* r is from source to enclosure l_{max} is for source
- r is from enclosure to receiver l_{max} is for enclosure dimension

Vibro-Acoustics Consortium

Enclosure to Receiver Air Path

Enclosed Source – Exposed Receiver

$$L_p = L_W + 10 \log \left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2} + \frac{4\psi_{se}}{R_r} \right) - SI_{diff} + 10 \log \left(\frac{\Gamma_e \chi_{er}}{4\pi r_{er}^2} \right)$$

Enclosure Airspace

Diffuse Field Violation Adjustment

$$\psi = e^{-\frac{\sqrt{2}}{2}x}$$
 $x = \frac{R_r}{S_r} = \frac{\overline{\alpha}}{1 - \overline{\alpha}}$

 R_r Room constant for enclosure

 S_r Surface area of enclosure

July 30, 2020

Enclosed Source – Exposed Receiver

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4\pi r_{se}^{2}} + \frac{4\psi_{se}}{R_{r}} \right) - \frac{SI_{diff}}{\Pr} + 10 \log \left(\frac{\Gamma_{e} \chi_{er}}{4\pi r_{er}^{2}} \right)$$
Panel Sound Isolation

Sound Isolation of Panel

Normal Incidence

$$TL_{\perp} = 20\log_{10}(\rho_s f) - 42 \text{ dB}$$

Field Incidence

$$TL_{field} = TL_{\perp} - 5 \text{ dB}$$

July 30, 2020

Partial Enclosed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2} + \frac{4\psi_{se}}{R_r}\right) + 10 \log\left(\frac{S_o}{S_e}\right) + 10 \log\left(\frac{\Gamma_e \chi_{er}}{4\pi r_{er}^2}\right)$$

Enclosure Airspace

Opening

Opening to Receiver Air Path

Partial Enclosed Source – Exposed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2} + \frac{4\psi}{R_r}\right) + 10 \log\left(\frac{S_o}{S_e}\right) + 10 \log\left(\frac{\Gamma_e \chi_{er}}{4\pi r_{er}^2}\right)$$

se

er

Opening

Opening Area

Near Field Adjustment

- So Open Area
- *S_e* Enclosure Area

- χ see earlier slides
 - r is from source to enclosure l_{max} is for source
 - r is from opening to receiver l_{max} is the opening dimension

Exposed Source – Enclosed Receiver

$$L_p = L_W + 10 \log\left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2}\right) + DI - \beta - SI_{\perp} - \Lambda + 10 \log\left(\frac{S_p}{R_r}\right)$$

Airborne Path from Source to Enclosure

Enclosure Walls

Enclosure Airspace

63

Exposed Source – Enclosed Receiver

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4\pi r_{se}^{2}}\right) + DI - \beta - SI_{\perp} - \Lambda + 10 \log \left(\frac{S_{p}}{R_{r}}\right)$$

Wall Sound

Sound Isolation of Panel

Normal Incidence

 $SI_{\perp} = 20 \log_{10}(\rho_s f) - 42 \text{ dB}$

Exposed Source – Enclosed Receiver

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4\pi r_{se}^{2}}\right) + DI - \beta - SI_{\perp} - \frac{\Lambda + 10 \log \left(\frac{S_{p}}{R_{r}}\right)$$
Wall

Location

Λ Addition to the Panel Sound Isolation

Distance from	Cab Panels	Frequency (Hz)							
Source (m)		63	125	250	500	1000	2000	4000	8000
	Side	9	9	9	9	9	9	13	17
0.1-2.0	Roof	5	9	9	12	12	12	15	18
	Back	11	14	14	14	14	14	17	20
	Side	5	7	7	7	7	7	9	9
> 2.0	Roof	6	8	8	8	8	8	10	10
	Back	5	11	11	13	13	13	18	18

Exposed Source – Enclosed Receiver

$$L_p = L_W + 10 \log \left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2}\right) + DI - \beta - SI_{\perp} - \Lambda + 10 \log \left(\frac{S_p}{R_r}\right)$$

Enclosure Airspace

Variables

- R_r room constant for enclosure
- S_p surface area of panel

July 30, 2020

Enclosed Source – Enclosed Receiver

$$L_{P_{rec}} = L_W + 10 \log \left(\frac{\Gamma_s \chi_{se}}{4\pi r_{se}^2} + \frac{4\psi_{se}}{R_{re}} \right) - SI_{panel} + 10 \log \left(\frac{S_p}{R_{rec}} \right)$$

Enclosure Airspace Panel Sound Receiver Room

with common wall

Isolation

Enclosed Source – Enclosed Receiver

Isolation

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4\pi r_{se}^{2}} + \frac{4\psi_{se}}{R_{re}} \right) - SI_{p} + 10 \log \left(\frac{S_{p}}{R_{rec}} \right)$$

Enclosure Airspace Panel Sound Receiver Room

Variables

Enclosed Source – Enclosed Receiver

$$L_{p} = L_{W} + 10 \log \left(\frac{\Gamma_{s} \chi_{se}}{4 \pi r_{se}^{2}} + \frac{4 \psi_{se}}{R_{re}} \right) - SI_{s} + 10 \log \left(\frac{\Gamma_{s} \chi_{er}}{4 \pi r_{er}^{2}} \right) - SI_{rec} + 10 \log \left(\frac{S_{p}}{R_{rec}} \right)$$

Enclosure Airspace Source Enclosure to Sound Isolation Receiver Sound Isolation Receiver Sound Isolation Isolation Isolation Isolation Receiver Laboratory Isolation Source Isolation Iso

Combining Paths

$$L_p = 10 \log_{10} \left(\sum_{i=1,N} 10^{\frac{L_{pi}}{10}} \right)$$

- *i* index for each path
- *N* number of paths

63

Overview

- Fundamentals
- Equations for Common Situations
- Examples

Exposed Source – Exposed Receiver

Sound Pressure Comparison Point 1

Sound Pressure Comparison Point 2

Enclosed Source – Enclosed Receiver

0.3 m from 3.2 mm Steel Panel

0.3 m from 1.4 mm Aluminum Panel

Partial Enclosed Source – Exposed Receiver

1.5 m from Enclosure

6

Tracked Dozer Exterior Noise

(

Tracked Dozer Interior Noise

- 1. Exhaust noise.
- 2. Intake noise.

3. Diesel noise propagating though the partition between the engine compartment and the cab.

4. Diesel noise propagating through enclosure underneath the opening.

5. Diesel compartment noise propagating though the enclosure panels.

6. Undercarriage noise propagating through the cab panels.

7. Undercarriage noise propagating through the cab floor.

8. Total airborne interior sound field of a tracked dozer.

References

- 1. Noise and Vibration Control in Vehicles, ed. M. J. Crocker and N. Ivanov, Politekhnika, St. Petersburg, 1993.
- 2. N. Ivanov and D. Copley, "Noise and Vibration in Off-Road Vehicle Interiors Prediction and Control", Chapter 98, Handbook of Noise and Vibration Control, ed. M. J. Crocker, Wiley, Hoboken, New Jersey, pp. 1186-1196, 2007.
- 3. N. Ivanov, Theoretical and practical noise control approaches to vehicle design. Proc. International Congress of Sound and Vibration, Lyngby, Denmark, 1999.
- 4. N. Ivanov, D. Kuklin, and D. Copley, Formulation of mathematical models for exterior noise prediction of construction machines. Proc. Int. Congress of Sound and Vibration, USA, 2002.
- 5. N. Ivanov and D. Copley, Practical use of noise source contribution prediction methods for effective noise control in construction machines. Proc. Int. Congress of Sound and Vibration, Sweden, 2003.
- 6. N. Ivanov and D. Copley, Separation of noise source contributions into exterior and interior sound fields of a vibratory compactor using empirical and experimental data. Proc. Int. Congress of Sound and Vibration, Russia, 2004.
- 7. N. Ivanov and D. Copley, Cab noise generation and noise control in construction machinery. Proc. Int. Congress of Sound and Vibration, Lisbon, 2005.
- 8. N. Ivanov and D. Copley, Effective exterior noise prediction in earth-moving machines. Proc. Int. Congress of Sound and Vibration, Lisbon, 2005.
- 9. N. Ivanov and D. Copley, Investigation of construction machine cab noise generation. Proc. Int. Congress of Sound and Vibration, Vienna, 2006.
- 10. N. Ivanov and D. Copley, Structure-borne sound contribution into earth-moving machine cabs, Proc. Int. Congress of Sound and Vibration, Australia, 2007.

