July 9, 2020

Mufflers and Silencers Advanced Topics

Vibro-Acoustics Consortium Web Meeting University of Kentucky

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

Performance Measures Transmission Loss

Performance Measures Insertion Loss

Performance Measures Noise Reduction

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

Transmission Loss Measurement

Transmission Loss Measurement

6

Design 1 Helmholtz Resonator

Units: Inches

Design 2 Helmholtz Resonator + Side Branch

Units: Inches

Design 3 Helmholtz Resonator + Side Branch

Transmission Loss Comparison

Insertion Loss Measurement

$$IL = L_{p1} - L_{p2} \quad (dB)$$

Insertion Loss Comparison

Design 1 Changing Inlet Length

Design 1 Changing Inlet Length

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

Source Impedance

Series (Transfer) Impedance

Source Impedance

Source Impedance Direct Measurement

Measuring material sample :

Loudspeaker Source Absorption

Source Impedance Circuit Analogy

Source Strength ~ Voltage Source Impedance ~ Internal resistor Particle Velocity ~ Current

$$\frac{p_s}{Z_s + Z_L} = \frac{P_L}{Z_L} \qquad \text{Unknowns: } p_s \text{ and } z_s$$

Use 2 or more loads to solve source properties.

Source Impedance Wave Decomposition

Use 2 or more loads to solve source properties.

$$p_{1+} = p_{s+} + p_{1-} \cdot R_s \longrightarrow p_{s+} \text{ and } R_s \longrightarrow z_s = \frac{1+R_s}{1-R_s}$$

$$p_{2+} = p_{s+} + p_{2-} \cdot R_s \longrightarrow p_{s+} \text{ and } R_s \longrightarrow z_s = p_{s+} \left(\frac{1-R_s}{2}\right)$$

Measurement Setup

Use tachometer to detect the start of each rotation.

Example Diesel Engine

Layout	6 cylinder, 4 stroke
Fuel	Diesel
Exhaust Diameter	4 inches
Exhaust Flow Rate	0.12 Mach
Test RPM	2400
Test Output Torque	Around 500 N·m

Vibro-Acoustics Consortium

Load number	Exhaust configuration
Load 1	<i>φ</i> 0.10 m × 9.5 m
Load 2	φ0.10 m × 3.5 m φ0.25 m × 0.75 m SEC φ0.10 m × 5 m
Load 3	φ0.10 m × 7.2 m
Load 4	<i>φ</i> 0.10 m × 8.1 m
Load 5	φ0.10 m × 6.2 m

Load 1~4:

used to obtain source properties.

Load 5: Used for validation.

Diesel Engine Source Impedance

Mechanical working condition: 2400 RPM, throttle fully open

 $z_s = \frac{\sqrt{2}}{2}(1-1i)$ \rightarrow Callow and Peat, 1988 Constant source impedance:

Imaginary Part

Vibro-Acoustics Consortium

Real Part

27

Diesel Engine SPL in Exhaust

Insertion Loss Muffler A

Source Impedance Measurement Difficulties

Difficulties of actual measurement:

- Extreme working conditions for pressure sensors (High temperature, turbulence...)
- Nonlinearity and time-variance of IC engines
- Choice of acoustic loads
- Cost

Sensitivity Study Muffler Insertion Loss

With the transfer matrix and source and transfer impedances known:

$$IL = 20 \log_{10} \left\{ \left| \frac{\frac{T_{11}}{Z_s} + \frac{T_{12}}{Z_t Z_s} + T_{21} + \frac{T_{22}}{Z_t}}{\frac{A_{11}}{Z_s} + \frac{A_{12}}{Z_t Z_s} + A_{21} + \frac{A_{22}}{Z_t}} \right| \right\}$$

A vector can be defined as

$$S_{IL} = \frac{\frac{T_{11}}{Z_s} + \frac{T_{12}}{Z_t Z_s} + T_{21} + \frac{T_{22}}{Z_t}}{\frac{A_{11}}{Z_s} + \frac{A_{12}}{Z_t Z_s} + A_{21} + \frac{A_{22}}{Z_t}}$$

Sensitivity Study Isolator Example

Zhang et al. (2018) showed that the boundary of the feasible range of z_S maps to the boundary of S_{IL} which can significantly speed up calculation of the range.

Process Effect of Source Impedance

- 1. Measure source impedance for a typical case and condition.
- 2. Determine the μ and σ over all frequencies.
- 3. Suggest $\pm 2\sigma$ as a reasonable range.
- 4. Determine the range of insertion loss.

Example Muffler Designs

Condition	RPM	Load
Condition 1	2400	100% W.O.T.
Condition 2	2400	75% W.O.T.
Condition 3	2400	50% W.O.L.
Condition 4	2400	No Load

()

Insertion Loss Range Muffler A

Insertion Loss Range Muffler B

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

FEM Modeling Source Impedance?

- Source impedance is modeled as a transfer impedance
- The source pressure is input as a pressure BC with a short duct length

FEM Transfer Relation

 $\begin{bmatrix} v_{n1} \\ v_{n2} \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_4 & \alpha_5 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + \begin{bmatrix} \alpha_3 \\ \alpha_6 \end{bmatrix}$

or,

$$\begin{bmatrix} v_{n1} \\ v_{n2} \end{bmatrix} = \begin{bmatrix} \beta & -\beta \\ -\beta & \beta \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

where β is the transfer admittance:

$$\beta = 1/z_s$$

FEM Sound Pressure at Termination

Source impedance for engine intake is specified and baffled termination is assumed.

Insertion Loss Modeling

Insertion Loss

FEM Contour Plots 494 Hz

FEM Contour Plots 606 Hz

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

Transmission Loss Definition

Define a complex ratio α between the two **incident pressures**:

$$\beta = \frac{p_{2i}}{p_{1i}}$$

$$TL = 10 \log_{10} \frac{W_{1i} + W_{2i}}{W_3} = 10 \log_{10} \frac{|p_{1i}|^2 S_1 + |p_{2i}|^2 S_2}{|p_3|^2 S_3}$$

Transmission Loss Superposition Method

Why anechoic? Avoid input coupling.

Transmission Loss Superposition Method

$$TL = 10 \log_{10} \frac{W_{1i} + W_{2i}}{W_3} = 10 \log_{10} \frac{|p_{1i}|^2 S_1 + |p_{2i}|^2 S_2}{|p_3|^2 S_3}$$

Transfer Functions (with other source and termination anechoic)

$$H_{13} = \frac{p_{3i}}{p_{1i}} \qquad \qquad H_{23} = \frac{p_{3i}}{p_{2i}}$$

Transmission Loss

Results 0° Phase Difference

 $\beta = 1$

Results 90° Phase Difference

Multi-Inlet Muffler

$$TL = 10 \log_{10} \frac{S_1 + |\beta|^2 S_2}{|H_{13} + \beta H_{23}|^2 S_3}$$

Two-Inlet Muffler

What about TL for three and more inlet muffler?

n-Inlet Muffler with Outlet *o*

$$TL = 10 \log \frac{S_1 + |\beta_1|^2 S_2 + \ldots + |\beta_n|^2 S_n}{|H_{1o} + \beta_1 H_{2o} + \ldots + \beta_n H_{no}|^2 S_o}$$

$$\beta_m = \frac{p_{mi}}{p_{1i}} \frac{\text{Incident wave strength of the mth inlet}}{\text{Incident wave strength of the 1st inlet}}$$

Insertion Loss

Insertion Loss

$$p_{3}^{s1} = \frac{p_{s1}z_{t}}{A_{1}z_{t} + B_{1} + C_{1}z_{s1}z_{t} + D_{1}z_{s1}} \qquad p_{3}^{s2} = \frac{p_{s2}z_{t}}{A_{2}z_{t} + B_{2} + C_{2}z_{s2}z_{t} + D_{2}z_{s2}}$$
$$L_{p_{1}} = 20\log_{10}\left(\sqrt{(p_{3}^{s1})^{2} + (p_{3}^{s2})^{2} + 2p_{3}^{s1}p_{3}^{s2}\cos\theta}\right)$$

SPL with Muffler

$$L_{p2} = 20 \log_{10} \left(\left| p_3^{S1} + p_3^{S2} \right| / p_{ref} \right)$$

54

* The similar technique can be applied to n-inlet muffler.

Experimental Validation

- 1. Measured source impedance and source strength for each loudspeaker.
- 2. Measured transfer matrix for muffler from each source to p_3 with other source "audible".
- 3. Measure termination.
- 4. Use measured data from prior steps to predict the insertion loss.

Insertion Loss

Effect of Source Phase

Overview

- Muffler Metrics
- Transmission and Insertion Loss
- Source Impedance
- Simulation of Source Impedance
- Multi-Inlet Mufflers

References

- ASTM E2611-09, "Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method, 2009.
- X. Hua, C. Jiang, D. W. Herrin, and T. W. Wu, "Determination of Transmission and Insertion Loss for Multi-Inlet Mufflers using Impedance Matrix and Superposition Approaches with Comparisons," Journal of Sound and Vibration, Vol. 333, No. 22, pp. 5680-5692 (2014).
- M. L. Munjal, Acoustics of Ducts and Mufflers, Wiley-Interscience, New York, 1987.
- M. L. Munjal, Noise and Vibration Control, IISC Lecture Notes Series Engineering, World Scientific Publishing Company, 2013.
- Y. Zhang, Jinghao Liu, G. Kadlaskar, G., Jiawei Liu, and D. W. Herrin, "Using the Moebius Transformation to Predict the Effect of Source Impedance on Insertion Loss," Noise Control Engineering Journal, Vol. 66, No. 2, pp. 105-116 (2018).

