April 30, 2020

Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium Web Meeting University of Kentucky

References

- 1. T. J. Cox and P. D'Antonio, *Acoustic Absorbers and Diffusers: Theory, Design and Application*, 3rd Edition, CRC Press, Boca Raton, FL (2017).
- 2. M. Long, *Architectural Acoustics*, 2nd Edition, Elsevier, Kidlington, Oxford (2014).

Overview

- <u>Porous Absorbers</u> Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- Reactive Absorbers Example

Sound is "absorbed" by converting sound energy to heat within the material, resulting in a reduction of the sound pressure.

Two primary mechanisms:

- vibration of the material skeleton damping
- friction of the fluid on the skeleton viscosity

(SEM images courtesy of Jesus Alba, Del Rey Romina, and Vicente Jorge Sanchis, Universitat Politècnica de Valencia and Henkel KGaA. Sand image courtesy of Siim Sepp, commons.wikimedia.org/wiki/File:Sand_from_Gobi_Desert.jpg Licensed under CC BY-SA 3.0.)

Porous Absorbers Overview

Vibro-Acoustics Consortium

5

Porous Absorbers Overview

- Foams are made of various materials including polyurethane, polyethylene, and polypropylene.
- Foams are created by a process that has been likened to bread rising.

T. J. Cox and P. D'Antonio, 2017 adapted from Cremer and Mueller, 1978

Porous Absorbers Overview

Sound energy is converted to heat via damping or viscosity.

Ermann, 2015

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- Reactive Absorbers Example

ASTM E1050 – Normal Incident Sound Absorption

ASTM E1050

Solid line indicates the mean sound absorption. Error bars indicate the 95% confidence limit in any one laboratory based on round robin tests.

Cox and D'Antonio, 2017 adapted from Horoshenkov et al., 2007

ASTM C423 – Diffuse Field Sound Absorption

Reverberation Room

Solid line indicates the mean sound absorption. Error bars indicate the 95% confidence limit in any one laboratory measurement on round robin tests (13 laboratories).

Cox and D'Antonio, 2017 adapted from Horoshenkov et al., 2007

Wright-Patterson AFB Study

Mechel, Mertens and Schilz (1965)

Porous Absorbers Property Determination

Characteristic Impedance $Z_m = \rho c (1 + C_1 X^{-C_2} - jC_3 X^{-C_4})$

Complex Wavenumber $k_m = \frac{\omega}{c} (1 + C_5 X^{-C_6} - jC_7 X^{-C_8})$

$$X =$$

 $\frac{\rho f}{\sigma}$

Material Type	<i>C</i> ₁	<i>C</i> ₂	C_3	C_4	C_5	C ₆	<i>C</i> ₇	C_8
Reference								
Rockwool/fiberglass								
Delaney and Bazley (1970)	0.0574	0 754	0.007	0 700	0.0070	0 700	0.400	0.505
	0.0571	0.754	0.087	0.732	0.0978	0.700	0.189	0.595
Rockwool/fiberglass								
Miki (1989)	0.070	0 632	0 107	0 632	0 100	0.618	0 160	0.618
Polyostor	0.070	0.052	0.107	0.052	0.109	0.010	0.100	0.010
Garai and Pompoli (2005)	0.078	0.623	0.074	0.660	0.159	0.571	0.121	0.530
Polyurethane foam of low		0.020	0.01		01100		•	0.000
flow resistivity								
Dupp and Davarp (1096)								
Dufin and Daveni (1960)	0 1 1 /	0 360	0 0085	0 758	0 168	0 715	0 136	0 / 01
Porous plastic foams of	0.114	0.003	0.0300	0.750	0.100	0.715	0.150	0.431
rolous plastic loans of								
medium now resistivity								
Wu (1988)	0.000	0 5 4 0	0.405	0.007	0.400	0 554	0.400	0.500
F 1	0.209	0.548	0.105	0.607	0.188	0.554	0.163	0.592
Fiber								
Mechel (2002)								
X > 0.025	0.081	0.699	0.191	0.556	0.136	0.641	0.322	0.502
X < 0.025	0.0563	0.725	0.127	0.655	0.103	0.716	0.179	0.663

$$k_m = \frac{\omega}{c'} \qquad \qquad Z_m = \rho' c'$$

Determination of Sound Absorption

$$\begin{cases} p_1 \\ u_1 \end{cases} = \begin{bmatrix} \cos(k_m L) & j Z_m \sin(k_m L) \\ j / Z_m \sin(k_m L) & \cos(k_m L) \end{bmatrix} \begin{cases} p_2 \\ u_2 \end{cases}$$

$$\longrightarrow z_s = \frac{p_1}{u_1} = -jZ_m \cot(k_m L)$$
$$R = \frac{z_s - \rho c}{r_s}$$

$$R = \frac{1}{z_s + \rho c}$$

$$\longrightarrow \alpha = 1 - |R|^2$$

Empirical Model Comparison

Based on Simón, Fernandez and Pfretzschner, 2006

Curve Fit Comparison

24 mm Melamine (8400 Rayls/m)

Champoux-Allard Model

- Flow Resistivity
- Porosity
- Tortuosity
- Viscous Characteristic Length
- Thermal Characteristic Length

Johnson-Champoux-Allard Model

- Flow Resistivity
- Porosity
- Tortuosity
- Viscous Characteristic Length
- Thermal Characteristic Length
- Static Thermal Permeability
- Static Viscous Permeability

Regardless of whether the simple flow resistivity or the more advanced phenomenological models are used, impedance tube measurements are performed, and some material properties are determined via curve fit. Once materials become compressed, which is frequently the case, all bets are off. Hence, we have tended to use the simple flow resistivity models and have had satisfactory results.

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- Reactive Absorbers Example

Takeaways

- Porous sound absorption is less effective at low frequencies because of the long wavelength, small particle velocity, and nondiffuse field.
- Relatively thin sound absorption will have some impact even at lower frequencies if the sound field is diffuse.

Ginn, 1978 (Reproduced by Long, 2014)

Thin layer with flow resistance $\sigma_r t$ where σ_r is the flow resistivity and *t* is the thickness.

In theory, the dissipated power (W_{diss}) is a maximum when $\sigma_r t = 2\rho c$. A general rule of thumb is that a sound absorber will be effective when $\sigma_r t \approx n\rho c$ where *n* is on the order of 2. This assumes that the acoustic resistance is equal to the static flow resistance.

Thin layer with flow resistance $\sigma_r t$ where σ_r is the flow resistivity and *t* is the thickness.

Long, 2014 based on Ingard, 1994

 $\sigma_r t = 2\rho c$ for each case

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- Reactive Absorbers Example

28.5 mm Polyurethane Foam

50.8 mm Glass Wool Fiber

24 mm Melamine Foam

40 mm Polyester Fiber

Wire Screen Barrier

Effect of Wire Screen on Absorption

24 mm Melamine Foam Sample

Flow Resistivity vs. Density

40 mm Polyester Fiber

Complex Wavenumber Polyester Fiber

Characteristic Impedance Polyester Fiber

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- Reactive Absorbers Example

Porous Absorbers Layered

$$[T] = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = [T_1][T_2][T_3]\dots[T_n]$$

$$\implies z_s = \frac{T_{11}}{T_{21}}$$

$$R = \frac{z_1 - \rho c}{z_1 + \rho c}$$

$$\implies \alpha = 1 - |R|^2$$

Porous Absorbers Layered Materials

Curve Fit using Fiber Model

Porous Absorbers Layered

Porous Absorbers Layered

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- <u>Reactive Absorbers Overview</u>
- Reactive Absorbers Example

Reactive Absorbers Overview

6

Reactive Absorbers Overview

$$f_r = \frac{1}{2\pi} \sqrt{\frac{\rho c^2}{m_s d}}$$

m_s	surface mass density
d	spacing from wall

A – with 1 in glass fiber B – no glass fiber

Long, 2014 based on Doelle, 1972

Overview

- Porous Absorbers Overview
- Porous Absorbers Property Determination
- Porous Absorbers Basics for Designers
- Porous Absorbers Compressed
- Porous Absorbers Layered
- Reactive Absorbers Overview
- <u>Reactive Absorbers Example</u>

Honeycomb with interconnected cells.

Jonza, J., Herdtle, T., Kalish, J., Gerdes, R., and Eichhorn, G., Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels, SAE International Journal of Vehicle Dynamics, Stability, and NVH 1(2):2017, doi:10.4271/2017-01-1813.

E

6

Baseline Case

1.5 in Fiber Treatment

Enclosure Study

 $IL = SWL_0 - SWL_1$

 SWL_0 is the sound power level in dB for the speaker SWL_1 is the dB level with the enclosure covered.

F

Effect of Panel Area

Reference Measurement

 $IL = L_{W,reference} - L_{W,silencer}$

6

Future Trends

- Hybrid dissipative reactive sound absorbers
- 3D printed sound absorbers
- Microperforated panels
- Acoustic Fabrics

