Flow Noise of Perforated Concentric Tubes

Seth Donkin

University of Kentucky

Background Perforate Tubes

2

- Sudden expansions provide broadband attenuation but have significant pressure drop.
- Pressure drop can reduce efficiency of the source.
- Perforated tubes can be used to
 - Limit the amount pressure drop
 - Protect absorption
 - Provide additional attenuation

Background Perforate Tubes

Background Flow Noise Sources

- Created by flow instabilities
- Depend on the coupling of fluid dynamics and the acoustic characteristics of cavity.
- Resonance is selfsustained by a fluidresonator feedback loop

Frequency of tone depends on:

- 1. Upstream turbulent boundary layer, δ_b
- 2. Mean fluid velocity, U_o
- 3. Opening size, b
- 4. Cavity volume
- 5. Cavity geometry

Fluid-resonator feedback loop:

- 1. Upstream edge causes separation of a vortex
- 2. Vortex is amplified across the opening as it travels downstream

Fluid-resonator feedback loop:

- 1. Upstream edge causes separation of a vortex
- 2. Vortex is amplified across the opening as it travels downstream
- 3. Vortex reaches the downstream edge and creates an unsteady pressure pulse.

Fluid-resonator feedback loop:

- 1. Upstream edge causes separation of a vortex
- 2. Vortex is amplified across the opening as it travels downstream
- 3. Vortex reaches the downstream edge and creates an unsteady pressure pulse.
- 4. The pressure pulse propagates back upstream through the cavity and triggers a new vortex.

- Tones frequency can be estimated using Rossiter modes
- ϕ phase correction
 - most flow tones, $\phi = \frac{\pi}{4}$
- $\gamma = \frac{U_c}{U_0}$
 - U_c convection speed of vortex
 - U_0 mean flow velocity

Experimental Methods

- Additional flow noise generated by the perforated pipe determined using methods resembling insertion loss measurement.
- Straight pipe and simple expansion chamber are the baseline references.

Experimental Methods Test Cases

Case	Description	Hole Pattern	Hole Diameter (mm)	Grid Spacing (mm)	OA (%)	Mach Number	Velocity (m/s)
1	Straight Pine	N/A	 N/A	N/A	N/A	0.1	34.3
-						0.12	41.2
2	Expansion Chamber	N/A	N/A	N/A	N/A	0.14	48.0
3	Perf 1	Square	4.7	17.2	6	0.16	54.9
4	Perf 2	Square	3.2	20.2	2	0.18	61.7
5	Perf 3	Square	3	9.5	8	0.2	68.6
c	Douf 4	Laura ta	2	C	20	0.22	75.5
0	Peri 4	Square	3	0	20	0.24	82.3
7	Perf 5	Square	3.5	4.6	45	0.26	89.2
8	Perf 6	Hex	0.8	4.2	3	0.28	96.0

Vibro-Acoustics Consortium

Experimental Methods Measurement Rig

Experimental Methods Measurement Rig

Experimental Setup Flow Source

Vibro-Acoustics Consortium

Experimental Setup Blower Silencer

Experimental Setup

Experimental Setup

Results SWL Mach 0.14

Results SWL Mach 0.14

Results Insertion loss Mach 0.14 – Ref. Straight Pipe

Results Insertion loss Mach 0.14 – Ref. Expansion Chamber

Results Mach Number vs Frequency of Tone

Results Mach Number vs Strouhal Number

Vibro-Acoustics Consortium

24

Next Steps

- Measure pressure drop for all cases.
- Check for repeatability of measurements by repeating at least one more time.
- Test methods for modifying perforation to control the generated flow noise on Perf. 1.
- Check for impacts on mufflers performance with modifications to perforation.

References

- 1. Åbom, Mats. 2008. An Introduction to Flow Acoustics.
- 2. Bies, David A., Colin Hansen, and Carl Howard. 2017. *Engineering Noise Control, Fifth Edition*. CRC Press.
- 3. Blake, William K. 2017. *Mechanics of Flow-Induced Sound and Vibration V1*. Academic Press.
- 4. Heller, H.H., D.G. Holmes, and E.E. Covert. 1971. "Flow-Induced Pressure Oscillations in Shallow Cavities." *Journal of Sound and Vibration*, no. 4 (October): 545–53. <u>https://doi.org/10.1016/0022-460x(71)90105-2</u>.
- 5. Lighthill, Sir M. J., and James Lighthill. 2001. *Waves in Fluids*. Cambridge University Press.
- 6. MA, RUOLONG, PAUL E. SLABOCH, and SCOTT C. MORRIS. 2009. "Fluid Mechanics of the Flow-Excited Helmholtz Resonator." *Journal of Fluid Mechanics*, March, 1–26. https://doi.org/10.1017/s0022112008003911.
- Nelson, P.A. 1982. "Noise Generated by Flow over Perforated Surfaces." *Journal of Sound and Vibration*, no. 1 (July): 11–26. https://doi.org/10.1016/s0022-460x(82)80072-2.
- 8. Yamada, Tatsuya, Takehiko Seo, Masato Mikami, and Takashi Esaki. 2013. "Characteristics of Whistle Noise from Mufflers with Perforated Pipes." *The Journal of the Acoustical Society of America*, no. 5 (May): 3363–3363. https://doi.org/10.1121/1.4805746.

Overview

- 1. Background on perforate tubes in mufflers and silencers
- 2. Background on flow noise and cavity resonances
- 3. Experimental approach
- 4. Measurement Setup
- 5. Results
- 6. Next steps

