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Ungar, 2007
Transmissibility
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Note: Transmissibility does not account for changes in the excitation force or motion that
may occur when a more flexible isolator is used. Most models using transmissibility assume
the machine and foundation to be rigid and the mass of the isolator to be negligible.
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Inman, 2014

Force Transmissibility
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Design Curves
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Introduction Characterization of Isolator
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The effectiveness of an isolator can be
described using isolator insertion loss:

vFl . .
IL = 20 - logy |— 18

Vrlisolated
A11ZF + Q13 + Qy1ZpZs + Ayl

= 20 - 10g10 ZS n ZF

Zsand Z; are the mechanical impedances at the
isolator mounting point on source and foundation
sides, respectively.
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Effect of Wave Propagation in Isolator
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Analysis Steps

« Static Analysis to pre-load mount (nonlinear, large deformation analysis)
* Modal Analysis to find loaded/pre-stressed modes
* Forced Response Analysis to find the transfer matrix

N 4 ) 4 N
Modal Superposition /
Static Analysis Modal Analysis Forced Response
Analysis
/ - / -

Boundary conditions depend upon the method used.
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Method 1 Mobility Matrix

Reconfigure into mobility matrix
V1) _ [b11 Dbi2](F4
{vz} by bzz] {Fz}

Solve model twice
Solve 1. F;, = 1;F,=0 Solve2:F;, = 0;F, =1

by, = -1 by, = -1

11 = o 12 =

Fy F,
F;=1,F,=0 F;=0,F,=1

by, = 22 by, = 22

21 — F_ 22 — F_
Fi=1,F,=0 21p, =0,F,=1
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Method 1 Mobility Matrix

Convert to traditional four-poles

{vl}z b11 b12]{F1}
V2 by1 byl (F;

b, 1
e —— a = —
all b21 12 b21
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Method 2 Impedance Matrix

Reconfigure into impedance matrix

Solve1: F,=1;v,=0
Solve 2. F, =1;,v; =0

C1q1 = f Ciy = f

11 = 12 =
Vily,=o V2lp =0

C21 = E C22 = Q
Vilp,=0 V2lp =0
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Method 2 Impedance Matrix

Convert to traditional four-poles

= Lo o))
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Difference Between Methods

Mobility Matrix Impedance Matrix

Isolator is free-free Isolator is fixed on
after static analysis. one side.

The isolator was constrained in the lateral direction in each case. The
difference in boundary conditions leads to slight differences.
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Simple Spring Properties

Spring Stiffness (Ungar, 2007) —5— )
. _ Gd*
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density of material

shear modulus of material
diameter of the spring wire
height of spring

average diameter of the spring
number of active coil turns

S o QD
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Simple Relationships

Insertion loss proportional to T ]
wnD?3
IL x 201logq, L d
T
First surge frequency
D
d |G a

nD? |p ]

A
v

density of material

shear modulus of material
diameter of the spring wire
height of spring

average diameter of the spring
number of active coil turns
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Case 1 Isolator Between Two Masses

[ 10 kg mass ]

{ 100 kg mass }
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Effect of Damping
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Insertion Loss Vary Spring Diameter D
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Insertion Loss Vary Wire Diameter d
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Insertion Loss Vary Number of Turns n
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Case 2 Isolator Between Two Structures

Machine Side

« 1 cm thick ribbed steel structure |:>

Foundation Side
- 50 cm X 30 cm :>

« 5 cm thick steel plate
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Local Model of Isolator

Transfer Matrix Approach

1. Determine impedances of foundation and
machine sides.

2. Use Insertion loss equation.

Response Point ]
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Sensitivity Study
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Case 1 — All Ribs

Case 2 — No Ribs

Case 3 — Remove Yellow

Case 4 — Remove Yellow and Red
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Insertion Loss Comparison
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1ISO 10846

Acoustics and vibration — Laboratory measurement of vibro-acoustic
transfer elements of resilient elements

Part 1 (2008): Principles and guidelines

Part 2 (2008): Direct method for determination of the dynamic
stiffness of resilient supports for translator motion

Part 3 (2002): Indirect method for determination of the dynamic
stiffness of resilient supports for translator motion
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ISO 10846-1 General Principles

Machine
(Vibration source)

ull “Fl

u1l Fy

Isolator

u2“ IFZ

u2“ l FZ

Foundation
(Receiving structure)

Assume
1. Linearity for vibrational behavior under a static preload.

2. Contact interfaces can be considered point contacts.

Fy, = kiuy + kiou,
Fy = ky1uy + kyou,

{F1}= k14 k12]{u1}
F, ka1 kool (U2

k,1 and k,, indicate dynamic driving point stiffness when the
output/input is blocked (k,; = k,, at low frequencies).

k,, and k,; indicate dynamic transfer stiffness (k,, = k, if inertial
forces can be neglected).
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ISO 10846-1 General Principles

Machine
(Vibration source) Foundation Dynamic Stiffness
Uy [ F ke = _h
A 4 uz
k
A 4 \ 4 1 + %
Isolator t
when k,, < 0.1k,
uz] ]Fz F, ~ szlocked = Ky
F
Ky = =
e -
Foundation

(Receiving structure)
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ISO 10846-1 General Principles

Machine Assume k; > k,q
Vibration source
( - ) F, =kyuy
ul,, Fy Fy = kyuy
At low frequencies
ulw y Fy k=~ ki1 = kjq
Isolator Complex low-frequency dynamic stiffness
1 k =ko(1+jn)
2% IFZ n= tanlp
ko real part of dynamic stiffness
w2 lF 2 n loss factor
Foundation Y phase angle of the dynamic stiffness

(Receiving structure)

The Vibro-Acoustics Consortium 30




July 8, 2021

ISO 10846-2 Direct Method

] 1— %
5 ka1 = ”
— Assume uq; > u,
3 Schematic of typical test rig
_,/ 1. Static preload and dynamic excitation
u ¥ 4 (shaker)
Foh o 2. Moveable traverse
5 3. Columns (guide rods, frame)
4. Test element (isolator)
J < s 5. Force measurement (load cells)
20 6 6. Rigid foundation (Blocking mass)

Image from ISO 10846-1
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Test Rig Design

| /.
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Direct Method Test Rig Design
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Direct measurement

k21 -
1
assume u; > u,

Schematic of test rig for Direct Method
Dynamic excitation (shaker)

Static preload

Decoupling springs

Excitation mass (m,)

Test element (isolator)

Lower force distribution flange
Force measurement (load cells)
Rigid foundation

ONOORE WD~
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ISO 10846-2 Direct Method

Valid Frequency Range:
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ISO 10846-2 Direct Method

Adequacy of blocking force measurement
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ISO 10846-2 Direct Method

Unwanted input vibration 1:
Loy, — Ly = 15dB
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ISO 10846-2 Direct Method

Unwanted input vibration 2:
Ly — Ly <0.5dB
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ISO 10846-2 Direct Method

Other Notes

1. Dynamic stiffness can be averaged in 1/3 octave bands using a
minimum of 5 frequencies per 1/3 octave band.

2. Results should be presented in dB with a reference of 1 N/m.
3. Vibration levels should be similar to those in practice.

4. Linearity check is required. Reduce input by 10 dBA to ensure that
the dynamic stiffness dB levels do not differ by more than 1.5 dB.
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ISO 10846-3 Indirect Method

Vibration Source Indirect measurement of force

1 F. u
ull Fy k2,1 ~ u—z ~ —a)zmz u—z
1 1
11 ) ] ' | Parts
—? 1. Exciter
Isolator — 2. Traverse
ry e 3. Connecting rod
U, I F, 5 4. Dynamic decoupling springs,
static preload
6 5. Test element
u,t lFZ L 6. B!ogking mass
7. Rigid foundation

Blocking Mass m,
(on isolators)

Image from ISO 10846-3
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Indirect Method Test Rig Design

D Indirect measurement
F; Uy
kpq = — = —w*m; —
' Uq Uy

Schematic of test rig for Indirect Method
Dynamic excitation (shaker)

Static preload

Decoupling springs

Excitation mass (m,)

Test element (isolator)

Lower force distribution flange
Blocking mass (m.,)

Rigid foundation

N ORWDN =
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Results Transfer Dynamic Stiffness
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(6113 N/m). Stiffness reference: ky=1 N/m
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1D Spring Models Transfer Matrix

Transfer Matrix Fi
cos(kL c; Sjsin(kL
{Fl} _ 1 (kL) PefrcLSjsin(kL) {Fz} vr‘f
(2] jsin(kL) cos(kL) Uy
peffCLS

May be rearranged in Impedance Matrix form

{Fl}_ PerrCLS [cos(kL) -1 {171}
F,) ~ jsin(kL) 1 —cos(kL)] (V2
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1D Spring Models Transfer Matrix

Model spring as an equivalent longitudinal force element.

Longitudinal Wave Speed eff
Peff ms/ LS

4
Spring Stiffness kg = Gd -
~ 8nD

Spring Stiffness with Damping ke =k +jn)

p ndz
Spring Mass mg = — J(nmD)? + 12

44
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ANSYS FEM Simulation

45
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Measurement Setup

Material Structural Steel /
Young's Modulus 2.00E+11 Pa
Shear Modulus 7.69E+10 Pa
Number of Effective Coils ~4 /
Material Density 7850 kg m*-3
Wire Diameter 0.005 m
Outer Diameter 0.05 m
Length (Uncompressed) 0.075 m
46

The Vibro-Acoustics Consortium




July 8, 2021

Results Acceleration Transmissibility
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