June 10, 2021

Sound Absorbing Fabrics

David Herrin University of Kentucky

Overview

- Fundamentals
- Acoustic Fabrics
- Parameter Study
- Effective Parameters
- Validation Studies

Takeaways

- Porous sound absorption is less effective at low frequencies because of the long wavelength, small particle velocity, and nondiffuse field.
- Relatively thin sound absorption will have some impact even at lower frequencies if the sound field is diffuse.

Ginn, 1978 (Reproduced by Long, 2014)

Thin layer with flow resistance $\sigma_r t$ where σ_r is the flow resistivity and t is the thickness.

Long, 2014 based on Ginn, 1978

In theory, the dissipated power (W_{diss}) is a maximum when $\sigma_r t = 2\rho c$. A general rule of thumb is that a sound absorber will be effective when $\sigma_r t \approx n\rho c$ where *n* is on the order of 2. This assumes that the acoustic resistance is equal to the static flow resistance.

Thin layer with flow resistance $\sigma_r t$ where σ_r is the flow resistivity and *t* is the thickness.

Long, 2014 based on Ingard, 1994

 $\sigma_r t = 2\rho c$ for each case

Overview

- Fundamentals
- Acoustic Fabrics
- Parameter Study
- Effective Parameters
- Validation Studies

Fabric Applications

Primarily used in architectural spaces.

Single Leaf Fabric Samples

Fabrics A and B are impermeable glass fabrics laminated with a vinyl film on each side. A hot needle process is used to make perforations.

Fabrics C and D are woven.

Highly Resistive Materials

$$z_{tr} = \frac{1}{\rho c} \frac{p_1 - p_2}{u_1}$$
$$z = z_{tr} - j \cot(kD)$$
$$R = \frac{z - 1}{z + 1}$$
$$\alpha = 1 - |R|^2$$

Maa's Theory

- *d* hole diameter
- σ perforation rate
- t thickness
- D cavity depth
- η dynamic viscosity

$$\frac{z_{perf} = \frac{32\eta t}{\sigma \rho c d^2} \left(\sqrt{1 + \frac{\beta^2}{32} + \frac{\sqrt{2}}{32}} \frac{\beta d}{t} \right) + \frac{j\omega t}{\sigma c} \left(1 + \frac{1}{\sqrt{9 + \frac{\beta^2}{2}}} + \frac{0.85d}{t} \right)}{\beta = d\sqrt{\rho \omega/4\eta}}$$

MPP Theory

Include Fabric Mass

$$z_{tr} = \frac{z_{perf} z_m}{z_{perf} + z_m}$$

mass per unit area (surface mass density)

Wu, Cheng, and Tao, 2003

Measure Transfer Impedance

$$Z_{tr} = \rho c z_{tr} = Z_1 - Z_2$$

Overview

- Fundamentals
- Acoustic Fabrics
- Parameter Study
- Effective Parameters
- Validation Studies

Effect of Hole Diameter

Effect of Perforation Rate

d = 0.40 mm $\sigma = ?$ t = 1.0 mm $m_s = 3.20 \text{ kg/m}^2$

Effect of Hole Diameter ($\sigma = f(d)$)

d = ? $\sigma = f(d)$ t = 1.0 mm $m_s = 3.20 \text{ kg/m}^2$

Effect of Thickness

d = 0.40 mm $\sigma = 0.04$ t = ? $m_s = 3.20 \text{ kg/m}^2$

Effect of Surface Mass Density

Vibro-Acoustics Consortium

20

Overview

- Fundamentals
- Acoustic Fabrics
- Parameter Study
- Effective Parameters
- Validation Studies

Curve Fitting Procedure

- 1. Measure sound absorption (10 cm cavity depth behind MPP/fabric).
- 2. Assume thickness and sometimes mass (based on measurement).
- 3. Predict sound absorption using Maa's equation with different hole diameters and perforation rates.
- 4. Determine best fit hole diameter (*d*) and perforation rate (σ).

Curve Fit 98.4 mm Diameter Tube

Vibro-Acoustics Consortium

Curve Fit 34.9 mm Diameter Tube

Effective Parameters

Mass effect included

	Thickness (mm)	Effective Hole Diameter (mm)		Effective Perforation Rate (%)		Surface Mass
		98.4 mm Tube	34.9 mm Tube	98.4 mm Tube	34.9 mm Tube	(kg/m ²)
Fabric A	0.33	0.26	0.29	0.84	0.79	0.38
Fabric B	0.33	0.38	0.32	2.30	2.45	0.38
Fabric C	0.70	0.15	0.15	5.29	5.54	0.59
Fabric D	0.70	0.14	0.12	8.85	12.78	0.45

Mass effect neglected

	Thickness (mm)	Effective Ho (m	ole Diameter m)	Effective Perforation Rate (%)		
		98.4 mm Tube	34.9 mm Tube	98.4 mm Tube	34.9 mm Tube	
Fabric A	0.33	0.32	0.36	0.96	1.05	
Fabric B	0.33	0.42	0.34	2.55	2.70	
Fabric C	0.70	0.17	0.15	4.38	5.29	
Fabric D	0.70	0.15	0.13	7.41	12.12	

Predictions with Effective Parameters

Predictions with Effective Parameters

Fabric D

Effective parameters determined using 98.4 mm tube measurements. Effective parameters then used to predict sound absorption at higher frequencies.

Fabric C

27

Transfer Impedance Comparison

Two Fabric Layers

Transmission Loss Measurement

$$TL = 10 \log \left(\frac{W_{inc}}{W_{tr}}\right)$$
 assuming anechoic termination

Transmission Loss

Fabrics A and C

Fabric C

Test 1 Enclosure Insertion Loss

 $IL = L_{W,untreated} - L_{w,treated}$

Test 1 Enclosure Insertion Loss

Double Layer Fabrics

Single Layer Foam

Test 1 Enclosure Insertion Loss

A

Test 2 Enclosure Attenuation

Empty Box

Single Layer Fabrics

Test 2 Enclosure Attenuation

Test 2 Enclosure Attenuation

Summary

- Fabric sound absorption and transmission loss is similar to that of MPP sound absorbers.
- Potential uses include deployable enclosures and architectural applications.

