December 17, 2020

Flow Noise

Vibro-Acoustics Consortium Web Meeting University of Kentucky

Lighthill's Analogy

Assumed only three fundamental types of sources are possible in a fluid.

- Monopole
- Dipole
- Quadrupoles

Weakness It ignores the interaction between sound and flow. An important example is the *whistle sound* caused by vortex shedding.

Elementary Sources

Monopole

Flow Noise Sources Monopoles

Skaistis, 1988 and Åbom, 2011

Flow Noise Sources Monopoles

$$Q \propto \frac{d(\Delta V)}{dt}$$

The implosion of a cavitation bubble is a strong source of sound, because it occurs in a very short time span (Åbom, 2011).

Sandberg and Ejsmont, 2007

Flow Noise Sources Monopoles

Vibro-Acoustics Consortium

6

Flow Noise Sources Dipoles

- A fan blade is a moving airfoil
- Positive and negative pressures produce noise to a stationary observer

December 17, 2020

Flow Noise Sources Dipoles

Flow over a rod

December 17, 2020

Flow Noise Sources Quadrupoles

Turbulence

The Strouhal Frequency

The frequency content scales to or is proportional to the Strouhal frequency.

$$f_{st} = \frac{U}{d}$$

Where *d* is the dimension of the source and *U* is the flow velocity.

Case 1 Periodic Vortex Shedding

Case 2 Turbulent Jet

December 17, 2020

Åbom, 2011

Case 3 Fan or Propeller

Where *D* is the diameter of the source, *K* is the number of blades, and f_0 is the rotational frequency.

B&K, 1982

Case 4 Air Flow over Cavities

Case 5 Whistle Tones

Vortex Shedding Frequency

 $f_{vs} = \alpha f_{st}$

Self Excited Acoustic Oscillation

 $f_{vs} = f_{res}$

Case I

Objectives

- Applied overview of aeroacoustic sources
- Scaling laws for sound power
- Practical measures to avoid problems

Sound Power Relationships

Relationship between a monopole and dipole

$$\frac{\overline{W}_{dipole}}{\overline{W}_{monopole}} = \frac{(kd)^2}{3}$$

Relationship between a dipole and quadrupole

$$\frac{\overline{W}_{quadrupole}}{\overline{W}_{dipole}} = \frac{(kd)^2}{5}$$

where d is the dimension of the source assuming the source region is assumed to be small compared to an acoustic wavelength.

Size of the Source Region

$$kd = \left(\frac{2\pi f_{st}}{c}\right)d = \left(\frac{2\pi}{c}\right)\left(\frac{U}{d}\right)d = 2\pi M$$

Flow acoustic sources are acoustically small for small Mach (*M*) numbers.

$$\frac{\overline{W}_{dipole}}{\overline{W}_{monopole}} \propto M^2 \qquad \qquad \frac{\overline{W}_{quadrupole}}{\overline{W}_{dipole}} \propto M^2$$

Sound Power of a Monopole

Sound power for a monopole

$$\overline{W}_m = \frac{\rho_0 c k^2}{4\pi} Q^2 \qquad \qquad k = \frac{2\pi f_{st}}{c} = \frac{2\pi (U)}{c}$$

Where the volume velocity (*Q*) is $Q \propto Ud^2$ Speed × Area

$$\overline{W}_m \propto \frac{\rho_0 c}{4\pi} \left(\frac{2\pi}{c} \frac{U}{d}\right)^2 (Ud^2)^2$$
$$\overline{W}_m \propto \rho_0 d^2 \frac{U^4}{c} = \rho_0 d^2 U^3 M$$

Scaling Laws for Sound Power

Dimension	Monopole	Dipole	Quadrupole
1-D	$ ho_0 c d^2 U^2$	$ ho_0 d^2 U^3 M$	$ ho_0 d^2 U^3 M^3$
2-D	$ ho_0 d^2 U^3$	$ ho_0 d^2 U^3 M^2$	$ ho_0 d^2 U^3 M^4$
3-D	$ ho_0 d^2 U^3 M$	$ ho_0 d^2 U^3 M^3$	$ ho_0 d^2 U^3 M^5$

Relative Importance of the Sources

Ordering Based on Mach Number $W_M : W_D : W_Q :: M : M^3 : M^5$ Ordering Based on Flow Velocity (sources of same type) $W_M : W_D : W_Q :: U^4 : U^6 : U^8$ Ordering Based on Frequency $W_M : W_D : W_Q :: f : f^2 : f^4$

Objectives

- Applied overview of aeroacoustic sources
- Scaling laws for sound power
- Practical measures to avoid problems

Prevention Vortex Shedding

Add spoilers to a smoke stack since the flow direction is variable.

Brüel and Kjaer, 1982

Prevention Air Flow over Cavities

- 1. Round the edges to reduce a whistle.
- 2. Fill cavities to avoid resonant amplification of sound.

Vibro-Acoustics Consortium

24

Prevention Turbulence in Pipes

- 1. Avoid obstacles and sharp bends.
- 2. Add length to allow turbulence to settle.

Brüel and Kjaer, 1982

December 17, 2020

Prevention Turbulence in Pipes

Increased separation

Brüel and Kjaer, 1982

Prevention Exhaust Noise

- 1. Avoid obstacles in the flow (can amplify sound up to 20 dB).
- 2. Halving the speed leads to a noise reduction of about 15 dB.

Brüel and Kjaer, 1982

Prevention Fan Noise

Place fans well downstream of obstacles or bends.

Brüel and Kjaer, 1982

Prevention Fan Noise

Brüel and Kjaer, 1982

Prevention Exhaust Noise

Add absorption in pipe to smooth turbulence and absorb sound.

Brüel and Kjaer, 1982

December 17, 2020

Prevention Exhaust Noise

Prevention Exhaust Noise

Replace a large exhaust by a number of small pipes.

Prevention Exhaust Noise

Change the noise problem from low to high frequency so that absorption can be used to attenuate the sound.

Brüel and Kjaer, 1982

Prevention Cavitation

Lower pressures in a number of small steps.

Brüel and Kjaer, 1982

- H. P. Wallin, U. Carlsson, M. Åbom, H. Bodén, and R. Glav, "Chapter 8: Sound Generation and Radiation," <u>Sound and Vibration</u>, Marcus Wallenberg Laboratory, Stockholm (2011).
- Noise Control: Principles and Practice, Brüel and Kjaer, Denmark (1982). https://www.bksv.com/media/doc/bn1299.pdf

