Simulating Perforations in MSC Actran

Xin Yan
University of Kentucky

Vibro-Acoustics Consortium
Introduction

Building Interior

Outdoor Noise Barrier

Engine Enclosure

HVAC Duct

Vibro-Acoustics Consortium
Objectives

• To model different perforation geometries to better understand how the shape of the perforation affects MPP properties.
• To investigate perforate and small channel modeling capabilities in MSC Actran.
MSC Actran has two simplified models to simulate the visco-thermal effects.

Low Reduced Frequency (LRF) Model
Uses closed form equations to model the small tubes. Geometry should be regular (cylindrical or rectangular). The code identifies the geometry and then assigns appropriate equation parameters to represent it.

Distance-Based Linearized Navier-Stokes-Fourier (DBLNSF) model
Determines visco-thermal effects using a simplified Navier-Stokes-Fourier model. Geometry may be arbitrary.
MSC Actran Axisymmetric Model

MSC Actran has built in tool to quickly create box-like geometry mesh.

Symmetry axis
Simulation Approach Sound Absorption

DBLNSF Model

Visco-thermal Wall

Velocity Inlet

Rigid End

Cavity Depth

Visco-thermal Component

Vibro-Acoustics Consortium
Comparison Absorption Coefficient

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
<td>0.4 mm</td>
<td>2.8 mm</td>
<td>2.0%</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

![Graph showing absorption coefficient comparison between Maa's Formula, LRF Model, and DBLNSF Model across different frequency bands.]
Comparison Absorption Coefficient

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
<td>0.5 mm</td>
<td>2.8 mm</td>
<td>3.2%</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Maa’s Formula
LRF Model
DBLNSF Model

Vibro-Acoustics Consortium
Method Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Calculation Time</th>
<th>Domain</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM</td>
<td>10 min</td>
<td>Frequency</td>
<td>2D axisymmetric</td>
</tr>
<tr>
<td>CFD (Herdtle et al., 2013)</td>
<td>?</td>
<td>Time</td>
<td>2D axisymmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incompressible</td>
<td></td>
</tr>
</tbody>
</table>

Vibro-Acoustics Consortium
Comparison Absorption Coefficient

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>0.22 mm</td>
<td>2.2 mm</td>
<td>1.0%</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>

![Graph showing comparison of FEM, CFD, and Maa's Formula for absorption coefficient against frequency (Hz).]
Comparison Absorption Coefficient

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Inlet Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>0.1 mm</td>
<td>1.0 mm</td>
<td>1.0%</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>

Vibro-Acoustics Consortium
Comparison Absorption Coefficient

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Inlet Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>0.13 mm</td>
<td>1.8 mm</td>
<td>0.5%</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>

Vibro-Acoustics Consortium
FEM Model Tapered Holes

Symmetry axis
Comparison Effect of Draft Angle

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Inlet Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>0.4 mm</td>
<td>2.8 mm</td>
<td>2.0%</td>
<td>1.0 mm</td>
</tr>
</tbody>
</table>

Vibro-Acoustics Consortium
Slit Type MPP Absorbers
Tapered on Both Sides

Symmetry axis
Comparison Effect of Draft Angle

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Inlet/Outlet Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>1 mm</td>
<td>5 mm</td>
<td>4.0%</td>
<td>1.0 mm</td>
</tr>
</tbody>
</table>

Absorption Coefficient vs Frequency (Hz)

- 11.3 Degrees
- 31 Degrees
- 38.7 Degrees

Vibro-Acoustics Consortium
Simulation Approach Transfer Impedance

Step 1 Determine $[T_{total}]$

$$[T_{total}] = [T_1][T_2][T_3]$$

Simulation 1 $v_1 = 1, v_2 = 0$

Simulation 2 $v_1 = 0, v_2 = 1$
MPP Transfer Impedance

Run 1

\[
T_{11}^* = p_{1|v_1=1,v_2=0} \\
T_{21}^* = p_{2|v_1=1,v_2=0}
\]

\[
T_{11} = \frac{T_{11}^*}{T_{21}^*} \\
T_{21} = \frac{1}{T_{21}^*}
\]

Run 2

\[
T_{12}^* = p_{1|v_1=0,v_2=1} \\
T_{22}^* = p_{2|v_1=0,v_2=1}
\]

\[
T_{12} = T_{12}^* - \frac{T_{11}^* T_{22}^*}{T_{21}^*} \\
T_{22} = -\frac{T_{22}^*}{T_{21}^*}
\]

\[
T_{total} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}
\]
Modeling Procedure

Step 2 Determine \(z_{tr}\)

\[
[T_{total}] = [T_1][T_2][T_3]
\]

\[
[T_2] = [T_1]^{-1}[T_{total}][T_3]^{-1}
\]

\[
[T_2] = \begin{bmatrix} 1 & \rho c z_{tr} \\ 0 & 1 \end{bmatrix}
\]
Comparison Transfer Impedance

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
<td>0.4 mm</td>
<td>2.8 mm</td>
<td>2.0%</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Normalized Transfer Impedance vs. Frequency (Hz)

- FEM (Real)
- FEM (Imag)
- Maa’s Formula (Real)
- Maa’s Formula (Imag)
Case 1 Transfer Impedance

<table>
<thead>
<tr>
<th>Cavity Depth</th>
<th>Hole Diameter</th>
<th>Model Diameter</th>
<th>Perforation Rate</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>0.22 mm</td>
<td>2.2 mm</td>
<td>1.0%</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>

![Graph showing transfer impedance data]
Summary

• LRF and DBLNSF models may be used to model perforations in MSC Actran.
• Sound absorption predictions seem to be adequate.
• Potential analysis tool for designing new types of MPP absorbers.