September 18, 2020

Simulating Perforations in MSC Actran

Xin Yan University of Kentucky

Introduction

Vibro-Acoustics Consortium

2

Objectives

- To model different perforation geometries to better understand how the shape of the perforation affects MPP properties.
- To investigate perforate and small channel modeling capabilities in MSC Actran.

Actran User's Guide

MSC Actran Visco-Thermal Effects

MSC Actran has two simplified models to simulate the visco-thermal effects.

Low Reduced Frequency (LRF) Model

Uses closed form equations to model the small tubes. Geometry should be regular (cylindrical or rectangular). The code identifies the geometry and then assigns appropriate equation parameters to represent it.

Distance-Based Linearized Navier-Stokes-Fourier (DBLNSF) model

Determines visco-thermal effects using a simplified Navier-Stokes-Fourier model. Geometry may be arbitrary.

First Result	vp1(active)
	L

Actran User's Guide

Vibro-Acoustics Consortium

MSC Actran Axisymmetric Model

MSC Actran has built in tool to quickly create box-like geometry mesh.

Simulation Approach Sound Absorption

Method Comparison

FEM

- Calculation Time: 10 min
- Frequency domain
- 2D axisymmetric

CFD (Herdtle et al., 2013)

- Calculation Time: ?
- Time domain
- Incompressible
- 2D axisymmetric

Cavity Depth	Hole Diameter	Model Diameter	Perforation Rate	Thickness
5 cm	0.22 mm	2.2 mm	1.0%	0.7 mm

Cavity Depth	Inlet Hole Diameter	Model Diameter	Perforation Rate	Thickness
5 cm	0.1 mm	1.0 mm	1.0%	0.7 mm
1 0.8 0.0 0.0 0.2 0.2				6° draft
0	Fre	equency (Hz)	4000 5000	

11

September 18, 2020

FEM Model Tapered Holes

Comparison Effect of Draft Angle

September 18, 2020

Slit Type MPP Absporbers

September 18, 2020

Tapered on Both Sides

Comparison Effect of Draft Angle

Simulation Approach Transfer Impedance

Step 1 Determine [*T*_{total}]

 $[T_{total}] = [T_1][T_2][T_3]$

MPP Transfer Impedance

Run 1

Run 2

- $T_{11}^* = p_{1|v_1=1,v_2=0} \qquad T_{12}^* = p_{1|v_1=0,v_2=1}$ $T_{21}^* = p_{2|v_1=1,v_2=0} \qquad T_{22}^* = p_{2|v_1=0,v_2=1}$
- $T_{11} = \frac{T_{11}^*}{T_{21}^*} \qquad T_{12} = T_{12}^* \frac{T_{11}^* T_{22}^*}{T_{21}^*}$ $T_{21} = \frac{1}{T_{21}^*} \qquad T_{22} = -\frac{T_{22}^*}{T_{21}^*}$

$$T_{total} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

Modeling Procedure

Step 2 Determine z_{tr}

 $[T_{total}] = [T_1][T_2][T_3]$ $[T_2] = [T_1]^{-1}[T_{total}][T_3]^{-1}$ $[T_2] = \begin{bmatrix} 1 & \rho c z_{tr} \\ 0 & 1 \end{bmatrix}$

Comparison Transfer Impedance

Case 1 Transfer Impedance

- LRF and DBLNSF models may be used to model perforations in MSC Actran.
- Sound absorption predictions seem to be adequate.
- Potential analysis tool for designing new types of MPP absorbers.

