July 23, 2020

Signal Processing Basics

David Herrin University of Kentucky

July 23, 2020

Frequency Response Function

2

Signal Processing

Digitization Analog to Digital

Time signals are sampled using an *analog-to-digital converter* (a digital logic hardware device) to yield a digitized version of the waveform for further processing.

Digitization Quantization Errors

Digitization Time Domain Terms

 $\Delta t =$ sample interval

 f_s = sampling rate = $1/\Delta t$

N = total number of data samples in one frame

T =total sample period or frame size

r =sample index number (1, 2, 3, ..., N)

 $t = r\Delta t$ time of any given sample

July 23, 2020

Digitization Sample Rate

https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Digital-Signal-Processing-Sampling-Rates-Bandwidth-Spectral/ta-p/402991

Signal Processing

July 23, 2020

Time and Frequency Domains

FFT Frequency Domain Terms

 $\Delta f = 1/T$ frequency resolution

number of spectral lines (total number of frequency samples)

bandwidth is the highest frequency captured in Fourier transform

Fourier Transform

Used to determine the frequency spectrum of dynamic signals – spectrum analyzer hardware

$$y(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(n\omega t) + B_n \sin(n\omega t))$$

$$y(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (C_n \cos(n\omega t - \phi_n))$$

$$A_0 = \frac{2}{T} \int_0^T y(t) dt \qquad A_n = \frac{2}{T} \int_0^T y(t) \cos(n\omega t) dt \qquad B_n = \frac{2}{T} \int_0^T y(t) \sin(n\omega t) dt$$

$$C_n = \sqrt{A_n^2 + B_n^2} \qquad \phi_n = \tan^{-1} \left(\frac{B_n}{A_n}\right)$$

$$T = \frac{2\pi}{\omega} \text{ Is the period of the signal, } \omega \text{ is the fundamental}$$

 $T = 2\pi/\omega$ Is the period of the signal, ω is the *fundamental* frequency (first harmonic), 2ω is the *second harmonic*, etc.

FFT Fast Fourier Transform

Discrete (digital) form:

$$A_n = \frac{2}{N\Delta t} \sum_{r=1}^N y(r\Delta t) \cdot \cos\left(\frac{2\pi}{N\Delta t} \cdot n \cdot r\Delta t\right) \Delta t = \frac{2}{N} \sum_{r=1}^N y(r\Delta t) \cdot \cos\left(\frac{2\pi}{N} \cdot n \cdot r\right) \quad n = 1, 2, \dots, \frac{N}{2}$$
$$B_n = \frac{2}{N} \sum_{r=1}^N y(r\Delta t) \cdot \sin\left(\frac{2\pi}{N} \cdot n \cdot r\right) \quad n = 1, 2, \dots, \frac{N}{2}$$

The DFT is a CPU intensive algorithm. N^2 operations are required. If we split the signal into parts and then take the DFT for each part, we can reduce the number of operations. The computation will take less than 1% of the original time if a smart algorithm referred to as the FFT is used. There are many different FFT recipes but all require a power of 2 number of samples i.e., 512, 1024, 2048, etc. (Bodén, Ahlin, and Carlsson, Signal Analysis)

FFT Settings

Pick	Then	And
Δt	$f_{max} = 1/2\Delta t$	$T = N\Delta t$
f _{max}	$\Delta t = 1/2 f_{max}$	$\Delta f = 1/N\Delta t$
Δf	$T = 1/\Delta f$	$\Delta t = T/N$
Т	$\Delta f = 1/T$	$f_{max} = N\Delta f/2$

Example

 $\Delta f = 5 \text{ Hz}$ and N = 1024

Then

$$T = 1/\Delta f = 1/5 \text{ Hz} = 0.2 \text{ sec}$$

 $f_s = N\Delta f = (1024)(5) \text{ Hz} = 5210 \text{ Hz}$
 $f_{max} = f_s = 5120/2 \text{ Hz} = 2560 \text{ Hz}$

Signal Processing

LP Filter The Aliasing Phenomenon

15

Nyquist frequency (f_{max}) is the highest frequency resolved in a DFT is:

$$f_{max} = \frac{f_s}{2}$$

https://community.plm.automation.sie mens.com/t5/Testing-Knowledge-Base/Aliasing/ta-p/367750

LP Filter Aliasing Phenomenon

Aliasing results in harmonics above the Nyquist frequency being "folded" back onto their neighbors.

LP Filter Preventing Aliasing

Signal Processing

Windowing What is Leakage?

Windowing What is Leakage?

Windowing What is Leakage?

From P. Avitabile (2017).

Windowing Applying a Window

Capturing an integer number of periods (minimum error).

Windowing Applying a Window

Capturing an integer number of periods plus half a period (maximum error).

Signal Processing

Averaging Data Processing Speed

Real Time Operation

Time Record 1	Time Re	cord 2	Time Record 3				
	FFT 1		FFT 2				

Non-Real Time Operation

Time Record 1	Time Record 2	Time Record 3	
	 FFT 1	FFT 2	

Signal Processing

- There is a problem in averaging time displaced signals
- We can plot correlation as a function of the time shift

Auto / Cross Correlation

Identical Signals (Autocorrelation)

Different Signals (Cross Correlation)

 $\tau = time shift$

Auto Correlation Square Wave

N = 16 samples

Auto Correlation Square Wave

	$\tau = 4$	$\cdot \Delta t$														
	1.0 1.	0 1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0 ~	1.0	1.0	1.0	-1.0	-1.0	-1.0	-1.0	
4 steps ──►	-1.0 -1.	0 -1.0	-1.0	1.0	1.0	1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	1.0	
	-1.0 -1.	0 -1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	$=-\frac{16}{N}=-1.0$
	$\tau = 84$	Δt														
	1.0 1.	0 1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	1.0	-1.0	-1.0	-1.0	-1.0	
8 stens								×								
→ 0 310p3	1.0 1.	0 1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	1.0	-1.0	-1.0	-1.0	-1.0	16
	1.0 1.	.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	$=\frac{10}{N} = 1.0$

July 23, 2020

Auto Correlation Square Wave

 $y(t) = \frac{4A}{\pi} \left(\frac{\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + }{\cdots + \frac{1}{n}\sin(n\omega t) + \cdots} \right)$

Square Wave Input

Square Wave Auto Correlation

$$y(t) = \frac{8A^2}{\pi^2} \begin{pmatrix} \cos(\omega t) - \frac{1}{9}\cos(3\omega t) + \frac{1}{25}\cos(5\omega t) - \frac{1}{9}\cos(3\omega t) \\ \dots + \frac{1}{n^2}\cos(n\omega t) + \dots \end{pmatrix}$$

$$R_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)x(t+\tau)dt$$

Example $x(t) = A \cdot \sin(\omega t + \varphi)$

Autocorrelation of a sine wave

$$R_{\chi\chi}(\tau) = \frac{A^2}{2}\cos(\omega t)$$

b) Auto correlation of random noise

F

Autocorrelation of sine wave buried in noise after many averages.

Cross Correlation 2 Square Waves

N = 16 samples

July 23, 2020

Cross Correlation 2 Square Wave

Cross Correlation

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)y(t+\tau)dt$$

$$x(t) = A_1 \sin(\omega t + \varphi)$$

$$y(t) = A_2 \sin(\omega t + \varphi + \vartheta)$$

$$A_1 A_2$$

$$R_{xy}(\tau) = \frac{A_1 A_2}{2} \cos(\omega \tau + \vartheta)$$

Example $x(t) = 2 \sin(\omega t)$ $y(t) = 3 \sin(\omega t + \pi)$

Signal Processing

July 23, 2020

Transfer Function Measurement

The Measurement Chain

Transfer Function Measurement

Transfer Function Measurement

$$H_1(f) = \frac{Y(f)X'(f)}{X(f)X'(f)} = \frac{G_{xy}}{G_{xx}}$$
$$H_2(f) = \frac{Y(f)Y'(f)}{X(f)Y'(f)} = \frac{G_{yy}}{G_{yx}}$$

Use if output is more susceptible to noise

Use if input is more susceptible to noise

Transfer Function Measurement

References

 The Fundamentals of Signal Processing, Agilent Technologies, Application Note 243 (2000).

http://www.modalshop.com/techlibrary/Fundamentals%20of%20DSP.pdf

- P. Avitabile, Modal Testing: A Practitioner's Guide, Wiley / SEM, West Sussex (2018).
- H. Bodén, K. Ahlin, and U. Carlsson, Applied Signal Analysis, KTH (2014).
- R. G. Lyons, Understanding Digital Signal Processing, 3rd Edition, Prentice Hall (2011).
- Siemens Simcenter Online Articles (2020).

